Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 319: 121189, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567721

ABSTRACT

Cellulose-based materials are a sustainable alternative to polymers derived from petroleum. Cellulose nanocrystal (CNC) is a biopolymer belonging to this family; it is commonly known for its important physical and chemical properties and ability to form a film. Modifying CNC via electrostatic interaction provided by cationic polymers is a facile and promising technique to enlarge the application of CNC. Herein, we report the preparation of films, from blends of negatively charged CNC and positively charged poly (trimethyl aminoethyl methacrylate) (PTMAEMA). The interaction between CNC and PTMAEMA was verified by using a quartz crystal microbalance with dissipation monitoring (QCM-D), as well as by measuring the particle size and ζ-potential of the casting mixture. To favor the application of the nanocomposite film in water treatment, the film was supported on Whatman™ paper, and adsorption tests were conducted using perfluorooctanoic acid (PFOA) as a model compound for the family of persistent fluorinated pollutants known as PFAS (per- and polyfluoroalkyl substances).

2.
Macromol Rapid Commun ; 43(2): e2100585, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34734443

ABSTRACT

Asymmetric and nanostructured polystyrene-block-poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO or SVEO, S:V:EO ≈ 56:34:10, 79.5 kg mol-1 ) thick films blended with 20 wt% of a short PS homopolymer (hPS, 10.5 kg mol-1 ) are achieved by combining the non-solvent induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment. Here, the NIPS step allows for the formation of a highly-permeable sponge-like substructure topped by a dense thin layer exhibiting poorly-ordered nanopores while the subsequent SVA treatment enables to reconstruct the material top surface into a porous monolayer of well-ordered hexagonal perforated lamellae (HPL). This optimized film architecture generated by NIPS-SVA shows a water permeability of 860 L h-1 m-2 bar-1 , which is roughly two times higher than the flux measured through NIPS made PS-b-P2VP-b-PEO/hPS materials having poorly-ordered nanopores. The post-SVA treatment is also revealed as a powerful tool to tailor the thickness of the nanostructure formed within the blended material because monoliths entirely composed of a HPL phase are produced by increasing the time of exposure to a chloroform stream. The water flux of such PS-b-P2VP-b-PEO/hPS monoliths is found to be an order of magnitude lower than that of their asymmetric film homologues.


Subject(s)
Nanostructures , Gases , Porosity , Solvents
3.
Macromol Rapid Commun ; 40(7): e1800860, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30632643

ABSTRACT

3-Miktoarm star terpolymer architecture (3µ-ABC), consisting of three dissimilar polymer chains, A, B, and C connected at a junction point, provides a unique opportunity in the design of complex nanoscale patterns such as Archimedean tilings that are not accessible from linear ABC terpolymers. In this work, the synthesis and the self-assembly of 3-miktoarm star terpolymers, namely, polystyrene-arm-poly(2-vinylpyridine)-arm-polyisoprene (3µ-SPI) into Archimedean tiling patterns is described. Several 3µ-SPI terpolymers are produced via a mid-functional PS-b-P2VP, synthesized by sequential anionic polymerization, using a 1,1-diphenylethylene bearing a tert-butyldimethylsilyl-protected hydroxyl functionality as a core molecule. PI arms with different sizes are then linked to the deprotected hydroxyl function of the core molecule via a Steglich esterification. Solvent-annealed 3µ-SPI thin films exhibit nanoscale prisms arranged into a (4.6.12) Archimedean tiling pattern. Depending on the size of the low etch-resistant PI arm and the solvent selected to promote the self-assembly of 3µ-SPI thin films, the voided columns occupy the square or decagonal sites of the (4.6.12) pattern. The use of this (4.6.12) tiling produced for the first time from self-assembled 3µ-ABC thin films can be a promising route to build 2D photonic crystals having complete photonic band gaps, where the light propagation is completely prohibited.


Subject(s)
Hemiterpenes/chemistry , Latex/chemistry , Nanostructures/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Molecular Structure
4.
ACS Macro Lett ; 8(8): 923-930, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-35619498

ABSTRACT

The combination of the nonsolvent-induced phase separation (NIPS) process with a solvent vapor annealing (SVA) treatment is used to produce asymmetric and hydrophobic thick films having different long-range ordered network nanostructures, which are inaccessible via currently available membrane fabrication methods. We show that the disordered phase generated by NIPS on the material top surface can be transformed into a highly ordered bicontinuous network nanostructure during the SVA process without disrupting the substructure morphology. For instance, by using a straightforward blending approach, either a triply periodic alternating diamond (DA) structure or a core-shell perforated lamellar (PL) phase was demonstrated on the skin layer of fully hydrophobic poly(1,1-dimethyl silacyclobutane)-block-polystyrene-block-poly(methyl methacrylate) (PDMSB-b-PS-b-PMMA) thick films. Such a material fabrication method, enabling the formation of a sponge-like substructure topped by a network phase having an excellent long-range order, provides an appealing strategy to facilitate the manufacture of next-generation membranes at large scale since these bicontinuous morphologies obviate the need of the nanochannel alignment.

5.
Nanoscale Adv ; 1(2): 849-857, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-36132249

ABSTRACT

Materials with a high and tunable refractive index are attractive for nanophotonic applications. In this contribution, we propose a straightforward fabrication technique of high-refractive index surfaces based on self-assembled nanostructured block copolymer thin films. The selective and customizable metal incorporation within out-of-plane polymer lamellae produces azimuthally isotropic metallic nanostructures of defined geometries, which were analysed using microscopy and small-angle X-ray scattering techniques. Variable-angle spectroscopic ellipsometry was used to relate the geometrical parameters of the metallic features and the resulting refractive index of the patterned surfaces. In particular, nanostructured gold patterns with a high degree of homogeneity and a gold content as low as 16 vol% reach a refractive index value of more than 3 in the visible domain. Our study thus demonstrates a new route for the preparation of high refractive index surfaces with a low metal content for optical applications.

6.
Macromol Rapid Commun ; 39(9): e1800043, 2018 May.
Article in English | MEDLINE | ID: mdl-29578265

ABSTRACT

The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol-1 ) building block and a carboxyl-terminated PI (9 kg mol-1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl3 vapor, different plane orientations of the Q230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness.


Subject(s)
Butadienes/chemistry , Hemiterpenes/chemistry , Nanostructures/chemistry , Pentanes/chemistry , Polystyrenes/chemistry , Polyvinyls/chemistry , Butadienes/chemical synthesis , Hemiterpenes/chemical synthesis , Particle Size , Pentanes/chemical synthesis , Polymers/chemical synthesis , Polymers/chemistry , Polystyrenes/chemical synthesis , Polyvinyls/chemical synthesis
7.
Macromol Rapid Commun ; 39(7): e1700754, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29337412

ABSTRACT

Nanotemplates derived from the self-assembly of AB-type block copolymers provide an elegant route to achieve well-defined metallic dot arrays, even if the variety of pattern symmetries is restricted due to the limited number of structures offered by microphase separated diblock copolymers. A strategy that relies on the use of complex network structures accessible through the self-assembly of linear ABC-type terpolymers is presented for the formation of metallic nanodots arrays with "outside-the-box" symmetries. Patterned templates formed by the cubic Q214 and orthorhombic O70 network structures are used as excellent platforms to build well-ordered gold nanodot arrays with unique p3m1 and p2 symmetries, respectively. A simple yet efficient blending strategy is used to tune the critical dimensions of the p3m1 pattern while laterally ordered gold nanodot arrays are also demonstrated through a directed self-assembly approach. Such highly ordered gold nanodots with tunable particle dimensions and array periods, enabling the control of their plasmonic responses, are attractive probes for biological imaging.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry
8.
Small ; 13(20)2017 05.
Article in English | MEDLINE | ID: mdl-28383179

ABSTRACT

The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films.

9.
Small ; 13(12)2017 03.
Article in English | MEDLINE | ID: mdl-28092432

ABSTRACT

Laterally ordered nanorings with a periodicity of 38 nm are produced from the directed self-assembly of poly(1,1-dimethylsilacyclobutane)-block-polystyrene-block-poly(methyl methacrylate) thin films on topographically patterned substrates. Such nanoscale arrays with vertically oriented rings are highly desired in technological applications including memory using magnetic recording, metamaterial, waveguide, etc.

10.
ACS Macro Lett ; 6(2): 121-126, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-35632880

ABSTRACT

Poly(ionic liquid)s (PILs) have attracted considerable attention as innovative single-ion solid polyelectrolytes (SPEs) in substitution to the more conventional electrolytes for a variety of electrochemical devices. Herein, we report the precise synthesis, characterization, and use as single-ion SPEs of a novel double PIL-based amphiphilic diblock copolymer (BCP), i.e., where all monomer units are of N-vinyl-imidazolium type, with triethylene glycol pendant groups in the first block and a statistical distribution of N-vinyl-3-ethyl- and N-vinyl-3-perfluorooctyl-imidazolium bromides in the second block. BCP synthesis is achieved directly in water by a one-pot process, by cobalt-mediated radical polymerization-induced self-assembly (CMR-PISA). A subsequent anion exchange reaction substituting bis(trifluoromethylsulfonyl)imide (Tf2N-) for bromide (Br-) counter-anions leads to PIL BCPs with two different lengths of the first block. They demonstrate ionic conductivity σDC = 1-3 × 10-7 S cm-1, as determined by broadband dielectric spectroscopy at 30 °C (under anhydrous conditions), and exhibit wide electrochemical stability (up to 4.8 V versus Li+/Li) and form free-standing films with mechanical properties suited for SPE applications (Young's modulus = 3.8 MPa, elongation at break of 250%) as determined by stress/strain experiments.

11.
ACS Nano ; 10(4): 4055-61, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27023426

ABSTRACT

3-Miktoarm star terpolymer architecture provides a window of opportunity in the design of complex "three-colored" patterns at the nanometer scale. Here, the directed self-assembly (DSA) of 3-miktoarm star terpolymer (poly(1,1-dimethyl silacyclobutane)-arm-polystyrene-arm-poly(d,l-lactide acid)) (PDMSB-arm-PS-arm-PLA, noted hereafter 3 µ-DSL) into a hierarchical lamellar morphology is described. Excellent orientational order has been achieved by templating the asymmetric hierarchical lamellar morphology with topographical substrates. Increasing the PLA volume fraction leads to the formation of a hexagonal [6.6.6] Archimedean tiling which coexists with a metastable square symmetry [4.8.8] tiling stabilized by the step between terraces. Stability of the [6.6.6] tiling over the [4.8.8] one is also demonstrated with GISAXS measurements.

12.
Macromol Rapid Commun ; 37(3): 221-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26618916

ABSTRACT

Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization. Conductivity anisotropy ratio up to 1000 has been achieved from PS-b-PSLiTFSI thin films by comparing Li-ion conductivities of out-of-plane (aligned) and in-plane (antialigned) cylinder morphologies at 40 °C. Blending of PS-b-PSLiTFSI thin films with poly(ethylene oxide) homopolymer (hPEO) enables a substantial improvement of Li-ion transport within aligned cylindrical domains, since hPEO, preferentially located in PSLiTFSI domains, is an excellent lithium-solvating material. Results are also compared with unblended and blended PSLiTFSI homopolymer (hPSLiTFSI) homologues, which reveals that ionic conductivity is improved when thin films are nanostructured.


Subject(s)
Electric Conductivity , Electrolytes/chemistry , Lithium/chemistry , Polymers/chemistry , Anisotropy , Chromatography, Gel , Ions , Microscopy, Atomic Force , Proton Magnetic Resonance Spectroscopy , Solvents/chemistry , Temperature
13.
Small ; 11(48): 6377-83, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26540591

ABSTRACT

Laterally ordered sub-10 nm features are produced from the directed self-assembly of poly(1,1-dimethyl silacyclo-butane)-block-poly(methyl methacrylate) (PDMSB-b-PMMA) thin films on sinusoidal azobenzene-containing patterns. The use of sinusoidal surface relief grating enables the formation of very large grain areas (over several µm(2) ) consisting of out-of-plane PMMA cylinders.

14.
Langmuir ; 31(24): 6675-80, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26035091

ABSTRACT

The preparation of magnetic inks stable over time made of L10-ordered FePt nanoparticles, thiol-ended poly(ethylene glycol) methyl ether (mPEO-SH) compatibilizing macromolecules and asymmetric polystyrene-block-poly(ethylene oxide) copolymers (BCP) as a subsequent self-organizing medium was optimized. It was demonstrated that the use of sacrificial MgO shells as physical barriers during the annealing stage for getting the L10-ordered state makes easier and more efficient the anchoring of compatibilizing PEO macromolecules onto the nanoparticles surface. L10-FePt grafted nanoparticles have shown a good colloidal stability and affinity with the PEO domains of the BCP leading to L10-FePt/BCP composite thin layers with individual magnetic dots dispersed in the BCP matrix.

15.
Adv Mater ; 27(2): 261-5, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25382210

ABSTRACT

Highly-ordered arrays with sub-10 nm features are produced with topographical-directed self-assembly of low-molecular-weight poly(1,1-dimethyl silacyclobutane)-block-poly(methyl methacrylate). This system turns out to be of high interest for lithographic applications since the domain orientation is solely controlled through the polymer layer thickness, while the promotion of the microphase separation is obtained by a short thermal annealing process under mild conditions.

16.
Adv Mater ; 26(18): 2777-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24504628

ABSTRACT

Simple yet versatile routes to generate macroscopically aligned 3-D NP arrays with tunable structures in supramolecular nanocomposite thin films are presented using faceted and lithographically patterned surfaces. These studies provide a powerful platform for the investigation of emerging structure-property relationships in functional nanocomposites, paving the way for the realization of next-generation devices.

17.
Macromol Rapid Commun ; 35(4): 422-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24338859

ABSTRACT

A poly(ionic liquid)-based block copolymer (PIL BCP), namely, poly(vinyl acetate)-b-poly(N-vinyl-3-butylimidazolium bromide), PVAc-b-PVBuImBr, is synthesized by sequential cobalt-mediated radical polymerization (CMRP). A PVAc precursor is first prepared at 30 °C in bulk by CMRP of VAc, using bis(acetylacetonato)cobalt(II), Co(acac)2, and a radical source (V-70). Growth of PVBuImBr from PVAc-Co(acac)2 is accomplished by CMRP in DMF/MeOH (2:1, v/v). This PIL BCP self-assembles in the sub-micron size range into aggregated core-shell micelles in THF, whereas polymeric vesicles are observed in water, as evidenced by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Thin-solid sample cut from raw materials analyzed by TEM shows an ordered lamellar organization by temperature-dependent synchrotron small-angle X-ray scattering (SAXS). Anion exchange can be accomplished to achieve the corresponding PIL BCP with bis(trifluorosulfonyl)imide (Tf2 N(-)) anions, which also gives rise to an ordered lamellar phase in bulk samples. A complete suppression of SAXS second-order reflection suggests that this compound has a symmetric volume fraction (f ≈ 0.5). SAXS characterization of both di- and triblock PIL BCP analogues previously reported also shows a lamellar phase of very similar behavior, with only an increase of the period by about 8% at 60 °C.


Subject(s)
Cobalt/chemistry , Free Radicals/chemistry , Ionic Liquids/chemistry , Polymers/chemistry , Micelles , Polymers/chemical synthesis , Water/chemistry
18.
Small ; 9(23): 4077-84, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-23824947

ABSTRACT

The directed self assembly of a 3-miktoarm star terpolymer (polyisoprene-arm-polystyrene-arm-polyferrocenylethylmethylsilane (3µ-ISF)) into a (4.8²) square symmetry Archimedean tiling pattern is described. Bulk samples of 3µ-ISF generate equilibrium columnar (4.8²) tile patterns (symmetry p 4 mm) on annealing, which is preceded by a metastable c 2 mm centered rectangular structure. In contrast, in thin films of 3µ-ISF blended with PS homopolymer, the c 2 mm phase is stable with columns oriented out of plane when the film thickness is below 50 nm. However, the 3µ-ISF/homopolymer blend rapidly forms a p 4 mm symmetry when the film thickness is ∼80 nm, with grain sizes of several µm and excellent order. Defects in the p 4 mm structure are described.

19.
Dalton Trans ; 42(22): 8034-40, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23570039

ABSTRACT

Sequential growth in solution is a powerful tool to control the growth of coordination networks on surfaces. We used this approach to prepare nanolayers of the bistable copper-molybdenum cyanide-bridged network. The nanolayers were grown on functionalized silicon and on bare platinum surfaces. The use of platinum dots organized on silicon oxide led to the growth of isolated and organized coordination objects. The bistable properties, characteristic of the bulk, have been evidenced for the nanolayers using infrared spectroscopy.

20.
Nano Lett ; 13(2): 835-9, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23343324

ABSTRACT

The directed self-assembly of 3-miktoarm star terpolymer chains (polyisoprene-arm-polystyrene-arm-polyferrocenylethylmethylsilane (3 µ-ISF)) into 2D Archimedean tilings is described. A morphological change from (4.8(2)) to (6(3)) tiling is reported in the 3 µ-ISF thin film blended with PS homopolymer when a greater swelling of PI is achieved during the solvent annealing process. Highly oriented (4.8(2)) tilings were produced by templating the self-assembled three colored structures in blended thin films. The use of (4.8(2)) and (6(3)) tilings as nanolithographic masks to transfer square and triangular hole arrays into the substrate is also demonstrated.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...