Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 9(10)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652635

ABSTRACT

: An improved computer-aided diagnosis (CAD) system is proposed for the early diagnosis of Alzheimer's disease (AD) based on the fusion of anatomical (magnetic resonance imaging (MRI)) and functional (8F-fluorodeoxyglucose positron emission tomography (FDG-PET)) multimodal images, and which helps to address the strong ambiguity or the uncertainty produced in brain images. The merit of this fusion is that it provides anatomical information for the accurate detection of pathological areas characterized in functional imaging by physiological abnormalities. First, quantification of brain tissue volumes is proposed based on a fusion scheme in three successive steps: modeling, fusion and decision. (1) Modeling which consists of three sub-steps: the initialization of the centroids of the tissue clusters by applying the Bias corrected Fuzzy C-Means (FCM) clustering algorithm. Then, the optimization of the initial partition is performed by running genetic algorithms. Finally, the creation of white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) tissue maps by applying the Possibilistic FCM clustering algorithm. (2) Fusion using a possibilistic operator to merge the maps of the MRI and PET images highlighting redundancies and managing ambiguities. (3) Decision offering more representative anatomo-functional fusion images. Second, a support vector data description (SVDD) classifier is used that must reliably distinguish AD from normal aging and automatically detects outliers. The "divide and conquer" strategy is then used, which speeds up the SVDD process and reduces the load and cost of the calculating. The robustness of the tissue quantification process is proven against noise (20% level), partial volume effects and when inhomogeneities of spatial intensity are high. Thus, the superiority of the SVDD classifier over competing conventional systems is also demonstrated with the adoption of the 10-fold cross-validation approach for synthetic datasets (Alzheimer disease neuroimaging (ADNI) and Open Access Series of Imaging Studies (OASIS)) and real images. The percentage of classification in terms of accuracy (%), sensitivity (%), specificity (%) and area under ROC curve was 93.65%, 90.08%, 92.75% and 0.973; 91.46%, 92%, 91.78% and 0.967; 85.09%, 86.41%, 84.92% and 0.946 in the case of the ADNI, OASIS and real images respectively.

2.
Med Image Anal ; 50: 145-166, 2018 12.
Article in English | MEDLINE | ID: mdl-30336383

ABSTRACT

Three-dimensional (3D) motorized curvilinear ultrasound probes provide an effective, low-cost tool to guide needle interventions, but localizing and tracking the needle in 3D ultrasound volumes is often challenging. In this study, a new method is introduced to localize and track the needle using 3D motorized curvilinear ultrasound probes. In particular, a low-cost camera mounted on the probe is employed to estimate the needle axis. The camera-estimated axis is used to identify a volume of interest (VOI) in the ultrasound volume that enables high needle visibility. This VOI is analyzed using local phase analysis and the random sample consensus algorithm to refine the camera-estimated needle axis. The needle tip is determined by searching the localized needle axis using a probabilistic approach. Dynamic needle tracking in a sequence of 3D ultrasound volumes is enabled by iteratively applying a Kalman filter to estimate the VOI that includes the needle in the successive ultrasound volume and limiting the localization analysis to this VOI. A series of ex vivo animal experiments are conducted to evaluate the accuracy of needle localization and tracking. The results show that the proposed method can localize the needle in individual ultrasound volumes with maximum error rates of 0.7 mm for the needle axis, 1.7° for the needle angle, and 1.2 mm for the needle tip. Moreover, the proposed method can track the needle in a sequence of ultrasound volumes with maximum error rates of 1.0 mm for the needle axis, 2.0° for the needle angle, and 1.7 mm for the needle tip. These results suggest the feasibility of applying the proposed method to localize and track the needle using 3D motorized curvilinear ultrasound probes.


Subject(s)
Imaging, Three-Dimensional , Ultrasonography/methods , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Needles
SELECTION OF CITATIONS
SEARCH DETAIL
...