Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Heliyon ; 10(6): e27915, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38510047

ABSTRACT

Recycling solid industrial wastes into valuable materials is always the priority solution in waste management. In this perspective, sugar scum and fly ash were used to produce an effective low-cost porous ceramic membrane. The impacts of the sintering temperature, amount of sugar scum, and sintering time on the properties of the prepared ceramic membrane were investigated and optimized using experimental design. A simultaneous rise in both the sintering temperature and the amount of sugar scum leads to a notable increase in porosity. Moreover, the simultaneous increase or decrease in the time and the amount of sugar scum causes a significant decrease in the compressive strength. The optimal conditions have been determined as a sintering temperature of 1197 °C, a sugar scum amount of 12.06 %, and a sintering time of 253 min. Under these conditions, the density, porosity, and compressive strength were found to be 2.16 g/cm³, 34.66 %, and 28.24 MPa, respectively. In addition, the obtained ceramic membrane has a water permeability of 2356.68 L/h m2 bar, a pore size in the range 0-4.5 µm, and excellent chemical resistance in both acidic and basic media. Finally, the performance of the prepared ceramic membrane was evaluated by the filtration of methylene blue. The results indicate that sugar scum and fly ash are suitable precursors to manufacture an effective ceramic membrane for the treatment of wastewater.

2.
Int J Biol Macromol ; 243: 125150, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37285882

ABSTRACT

Hydroxyapatite (HA) and chitosan (CS) biopolymer are the major materials investigated for biomedical purposes. Both of these components play an important role in the orthopedic field as bone substitutes or drug release systems. Used separately, the hydroxyapatite is quite fragile, while CS mechanical strength is very weak. Therefore, a combination of HA and CS polymer is used, which provides excellent mechanical performance with high biocompatibility and biomimetic capacity. Moreover, the porous structure and reactivity of the hydroxyapatite-chitosan (HA-CS) composite allow their application not only as a bone repair but also as a drug delivery system providing controlled drug release directly to the bone site. These features make biomimetic HA-CS composite a subject of interest for many researchers. Through this review, we provide the important recent achievements in the development of HA-CS composites, focusing on manufacturing techniques, conventional and novel three-dimensional bioprinting technology, and physicochemical and biological properties. The drug delivery properties and the most relevant biomedical applications of the HA-CS composite scaffolds are also presented. Finally, alternative approaches are proposed to develop HA composites with the aim to improve their physicochemical, mechanical, and biological properties.


Subject(s)
Chitosan , Chitosan/chemistry , Durapatite/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods , Bone Regeneration , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...