Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 156: 108618, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988978

ABSTRACT

Microbial Fuel Cells (MFC) convert energy stored in chemicals into electrical energy thanks to exoelectrogenic microorganisms who also play a crucial role in geochemical cycles in their natural environment, including that of iron. In this study, we investigated paleomarine sediments as inoculum for bioanode development in MFCs. These sediments were formed under anoxic conditions ca. 113 million years ago and are rich in clay minerals, organic matter, and iron. The marlstone inoculum was incubated in the anolyte of an MFC using acetate as the added electron donor and ferricyanide as the electron acceptor in the catholyte. After seven weeks of incubation, the current density increased to 0.15 mA.cm-2 and a stable + 700 mV open circuit potential was reached. Community analysis revealed the presence of two exoelectrogenic bacterial genera, Geovibrio and Geobacter. Development of electroactive biofilms was correlated to bulk chemical transformations of the sediment inoculum with an increase in the Fe(II) to Fetotal ratio. Comparisons to sediments sterilized prior to inoculation confirmed that bioanode development derives from the native microbiota of these paleomarine sediments. This study illustrates the feasibility of developing exoelectrogenic biofilms from iron-rich marlstone and has implications for the role of such bacteria in broader paleoenvironmental phenomena.


Subject(s)
Bioelectric Energy Sources , Iron , Electrodes , Bacteria , Electricity , Bioelectric Energy Sources/microbiology , Biofilms
2.
Bioelectrochemistry ; 151: 108394, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36739700

ABSTRACT

Exo-electrogenic microorganisms have been extensively studied for their ability to transfer electrons with solid surfaces using a large variety of metabolic pathways. Most of the studies on these microorganisms consist in the replacement of solid electron acceptors such as Fe(III) oxides found in nature by electrodes with the objective of generating harvestable current in devices such as microbial fuel cells. In this study we show how the presence of solid ferric oxide (Fe2O3) particles in the inoculum during bio-anode development influences extracellular electron transfer to the electrode. Amplification and sequencing of the 16S rRNA (V4-V5 region) show bacteria and archaea communities with a large predominance of the Pelobacter genus, which is known to be phylogenetically close to the Geobacter genus, regardless of the presence or absence of ferric oxide in the inoculum. Data indicate that the bacteria at the bio-anode surface can preferentially utilize solid ferric oxide as terminal electron acceptors instead of the anode, though extracellular electron transfer to the anode can be restored by removing the particles. Mixed inoculum commonly used to develop bioanodes may produce similar bacterial communities with divergent electrochemical responses due to the presence of alternate electron acceptors, with direct implications for microbial fuel cell performance.


Subject(s)
Bioelectric Energy Sources , Deltaproteobacteria , Geobacter , Ferric Compounds/metabolism , Oxides , Electrons , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Bacteria/metabolism , Deltaproteobacteria/genetics , Bioelectric Energy Sources/microbiology , Geobacter/metabolism , Electrodes , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...