Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 302: 134750, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35504468

ABSTRACT

Increasing water pollution is a severe problem in densely industrialized countries. Nanomaterials provide strong potentials for the efficient elimination of organic pollutants due to their beneficial properties. Advancement in water purification is required to more efficiently remove the emerging organic contaminants, especially in pharmaceuticals wastes such as acetophenone, which shows high solubility in industrial wastewaters. Bismuth ferrite-based nanostructures were fabricated using a novel double solvent sol-gel method. The phase purity and crystallinity of bismuth ferrite were confirmed using XRD and further endorsed by TEM analysis. The SEM and XPS were used to study the particle sizes and presence of co-dopants on the Bi and Fe-sites of bismuth ferrite. After co-doping, the band-gap engineering of pure bismuth ferrites was accomplished by reducing it from 2.06 eV to 1.45 eV, likely attributing to the creation of shallow traps for the incoming photo-generated charge carriers. In particular, the Bi0.90Gd0.10Fe0.95Sn0.05 and Bi0.95Sm0.05Fe0.75Mn0.25 successfully eliminated up to 98% of acetophenone from polluted water in 3 h by irradiation of visible-light. These results reveal the suitability of the co-doped bismuth ferrites photocatalysts for the practical removal of pharmaceutical contaminants in hazardous industrial wastewater. The photodegradation of acetophenone by bismuth ferrite nanostructures with potentially long-lasting reusability demonstrate its potential as an advanced photocatalyst for wastewater treatment.


Subject(s)
Bismuth , Nanostructures , Acetophenones , Bismuth/chemistry , Catalysis , Ferric Compounds , Industrial Waste , Light , Nanostructures/chemistry , Wastewater , Water
2.
Chemistry ; 26(25): 5662-5666, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32078744

ABSTRACT

The design of a three-dimensional structure for an Ir-based catalyst offers a great opportunity to improve the electrocatalytic performance and maximize the use of the precious metal. Herein, a novel wet chemical strategy is reported for the synthesis of an IrRuMn catalyst with a sphere structure and porous features. In the synthetic process, the combined use of citric acid and formamide is requisite for the formation of the sphere structure. This method leads to a favorable 3D IrRuMn sphere structure with many fully exposed active sites. Furthermore, an alloying noble metal, such as Ir or Ru, with the transition metal leads to enhanced oxygen evolution reaction (OER) activity. The doping of a transition metal, such as Mn, is an interesting example, because it exhibits stability and activity in both acidic and alkaline media. For the OER, the IrRuMn sphere catalyst exhibits an overpotential of 260 mV at a current density of 10 mA cm-2 in strongly acidic 0.1 m HClO4 , which is superior to that of a commercial IrO2 /C catalyst. This approach provides a novel way to synthesize an Ir-based multimetallic spherical electrocatalyst, which exhibits exceptional efficiency for the acidic OER. It will pave the way for new approaches to the practical utilization of PEM electrolyzers.

SELECTION OF CITATIONS
SEARCH DETAIL
...