Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 92(10): 4417-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25085399

ABSTRACT

A transgenic line of Yorkshire (YK) pigs named the Cassie (CA) line was produced with a low copy number phytase transgene inserted in the genome. The transgenic line efficiently digests P, Ca, and other major minerals of plant dietary origin. The objectives of this study were to 1) compare carcass and tissue nutrient composition and meat quality traits for third generation hemizygous CA line market BW finisher pigs (n = 24) with age-matched conventional YK finisher pigs (n = 24) and 2) examine effects of outbreeding with high-index conventional YK boars on modifying carcass leanness from the third to sixth generations in CA line finisher boars (n = 73) and gilts (n = 103). Cassie boars (n = 12) and CA gilts (n = 12) were fed diets without supplemental P and comparable numbers of age-matched YK boars and gilts fed diets containing supplement P were raised throughout the finisher phase. The pigs were slaughtered and then fabricated into commercial pork primals before meat composition and quality evaluation. Proximate and major micronutrient composition was determined on tissues including fat, kidney, lean, liver, and skin. The main difference observed was greater (P = 0.033) crude fat content in CA boar carcasses and increased (P < 0.04) leaf lard in both CA boars and gilts but no differences were observed (P = 0.895 and P = 0.223, respectively) in carcass backfat thickness as compared with YK pigs. There were no substantive differences in tissue composition, except for CA boar kidneys. Numerous changes in the mineral, fatty acid, and indispensable AA composition for CA boar kidneys were not apparent in CA gilts. These changes may point to adaptive physiological changes in the boar kidney necessary for homeostatic regulation of mineral retention related to phytase action rather than to insertion of the transgene. However, from a meat composition perspective, transgenic expression of phytase in the CA line of YK pigs had little overall effect on meat composition. Outbreeding of high-index CA gilts with high-index commercial YK boars linearly reduced (P = 0.002) back fat thickness with a corresponding linear increase (P = 0.001) in lean yield in finisher CA gilts, although no change in these parameters was observed in CA finisher boars. The increase in lean yield in CA gilts by selective breeding without affecting the level of salivary phytase activity documents the value of conventional genetic selection in conjunction with genetic modification.


Subject(s)
6-Phytase/metabolism , Animals, Genetically Modified/physiology , Body Composition/physiology , Kidney/physiology , Meat , Saliva/metabolism , Sus scrofa/physiology , 6-Phytase/genetics , Age Factors , Animals , Animals, Genetically Modified/genetics , Breeding/methods , Dietary Supplements , Gene Transfer Techniques/veterinary , Phosphorus/metabolism , Sus scrofa/genetics , Swine
2.
J Anim Sci ; 91(3): 1307-20, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23296825

ABSTRACT

A line of transgenic Yorkshire pigs referred to as the Cassie (CA) line was generated, which possessed a stable, low copy number phytase transgene insertion that enabled phytase secretion in the saliva. This study was conducted to assess growth and efficacy for improving P, Ca, and other macromineral utilization in the CA pigs receiving diets typical of those used for commercial swine production. In Exp. 1, 12 CA boars and 12 CA gilts fed diets without supplemental P gained weight and exhibited feed efficiency similar to conventional age-matched 12 Yorkshire boars and 12 Yorkshire gilts raised on similar diets with supplemental P. Serum concentrations of P and Ca were similar for CA and Yorkshire pigs during the growing and finishing phases, indicating that the CA pigs were not P limited. In Exp. 2, 6 CA (13.1 kg BW) and 6 Yorkshire barrows (8.8 kg BW) were fed 3 diets (control; low in Ca and P; and low in Ca, P, and CP) over 3 phases. The CA barrows fed the diet without supplemental P retained 25 to 40% (P < 0.001), 77 to 91% (P < 0.001), and 27 to 56% (P < 0.001) more P during the weaning, growing, and finishing phases, respectively, than conventional Yorkshire barrows fed similar diets without supplemental P. In Exp. 3, CA and Yorkshire barrows of similar ages weighing 66.2 ± 1.7 kg (n = 10) and 50.0 ± 1.0 kg (n = 10), respectively, were used. The P retention of CA finisher barrows fed a diet without supplemental P was 34% greater (P < 0.001) than conventional Yorkshire barrows fed the same diet with 750 units of exogenous phytase/kg diet. Urinary Ca to P ratio in the CA pigs was 0.27, whereas that for the Yorkshire barrows was 30, thereby, indicating that the Yorkshire barrows suffered a P deficiency. Furthermore, digestive utilization of major electrolyte macrominerals, K and Na, was improved (P < 0.05) by 18 and 16%, respectively, in the CA finisher pigs compared with the conventional Yorkshire finisher pigs fed phytase; however, only K exhibited enhanced retention. In conclusion, the CA line pigs secrete sufficient phytase from the salivary glands to enable efficient digestion of plant P, Ca, and major electrolyte macrominerals.


Subject(s)
6-Phytase/administration & dosage , 6-Phytase/metabolism , Digestion , Electrolytes/metabolism , Phosphorus, Dietary/metabolism , Sus scrofa/physiology , 6-Phytase/genetics , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/physiology , Blood Chemical Analysis/veterinary , Calcium/blood , Calcium/metabolism , Calcium/urine , Dietary Supplements/analysis , Electrolytes/blood , Electrolytes/urine , Feces/chemistry , Male , Minerals/blood , Minerals/metabolism , Minerals/urine , Phosphorus, Dietary/blood , Phosphorus, Dietary/urine , Spectrophotometry, Atomic/veterinary , Sus scrofa/genetics , Sus scrofa/growth & development
3.
J Anim Sci ; 81(11): 2766-75, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14601880

ABSTRACT

The objectives of this study were to determine true P digestibility, the gastrointestinal endogenous P outputs associated with soybean meal (SBM), and the role of the large intestine in P digestion in growing pigs. Four Yorkshire barrows, with average initial and final BW of 40 and 58 kg, were fitted with a simple T-cannula at the distal ileum and fed four diets according to a 4 x 4 Latin square design. The diets were cornstarch-based and contained four levels of P (0.098, 0.196, 0.293, and 0.391% on a DM basis) from solvent-extracted conventional SBM. Chromic oxide (3.5 g/kg of diet, as-fed basis) was included as a digestibility marker. Each experimental period consisted of 8 d with a 4-d adaptation period and a 4-d collection of representative ileal digesta (2 d) and fecal (2 d) samples. True ileal and fecal P digestibility values and the ileal and fecal endogenous P outputs associated with SBM were determined by the regression analysis technique. There were no differences (P > 0.05) in true P digestibility values (ileal, 59.0 +/- 8.3 vs. fecal, 51.3 +/- 7.9%, n = 16) and endogenous P outputs (ileal, 0.59 +/- 0.18 vs. fecal, 0.45 +/- 0.21 g/kg of DMI, n = 16) between the ileal and the fecal levels. The endogenous fecal P loss accounted for 8.1 and 17.6% of the NRC (1998) recommended total and available P requirements in growing pigs, respectively. In conclusion, approximately 51% of the total P in conventional SBM is digested in growing pigs. The large intestine does not play an important role in the digestion of P associated with SBM in the growing pig. The fecal loss of the gastrointestinal endogenous P is an important route of P excretion in the growing pig.


Subject(s)
Digestion , Glycine max , Ileum/metabolism , Phosphorus/metabolism , Swine/metabolism , Animals , Chromium Compounds/metabolism , Dose-Response Relationship, Drug , Feces/chemistry , Intestinal Absorption , Male , Nutritional Requirements , Nutritive Value , Random Allocation , Regression Analysis , Swine/growth & development
4.
Nat Biotechnol ; 19(8): 741-5, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11479566

ABSTRACT

To address the problem of manure-based environmental pollution in the pork industry, we have developed the phytase transgenic pig. The saliva of these pigs contains the enzyme phytase, which allows the pigs to digest the phosphorus in phytate, the most abundant source of phosphorus in the pig diet. Without this enzyme, phytate phosphorus passes undigested into manure to become the single most important manure pollutant of pork production. We show here that salivary phytase provides essentially complete digestion of dietary phytate phosphorus, relieves the requirement for inorganic phosphate supplements, and reduces fecal phosphorus output by up to 75%. These pigs offer a unique biological approach to the management of phosphorus nutrition and environmental pollution in the pork industry.


Subject(s)
6-Phytase/chemistry , 6-Phytase/genetics , Animals, Genetically Modified , Phosphorus/chemistry , Saliva/enzymology , Animals , Blotting, Western , Dietary Supplements , Immunohistochemistry , Manure , Parotid Gland/metabolism , Phosphates/pharmacology , Phosphorus/metabolism , Salivary Glands/metabolism , Swine , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...