Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 15(4): 2359-2374, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30860827

ABSTRACT

The interactions of water with polycyclic aromatic hydrocarbons, from benzene to graphene, are investigated using various exchange-correlation functionals selected across the hierarchy of density functional theory (DFT) approximations. The accuracy of the different functionals is assessed through comparisons with random phase approximation (RPA) and coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] calculations. Diffusion Monte Carlo (DMC) data reported in the literature are also used for comparison. Relatively large variations are found in interaction energies predicted by different DFT models, with GGA functionals underestimating the interaction strength for configurations with the water oxygen pointing toward the aromatic molecules. The meta-GGA B97M-rV and range-separated hybrid, meta-GGA ωB97M-V functionals provide nearly quantitative agreement with CCSD(T) values for the water-benzene, water-coronene, and water-circumcoronene dimers, while RPA and DMC predict interaction energies that differ by up to ∼1 kcal/mol and ∼0.4 kcal/mol from the corresponding CCSD(T) values, respectively. Similar trends among GGA, meta-GGA, and hybrid functionals are observed for larger polycyclic aromatic hydrocarbons. By performing absolutely localized molecular orbital energy decomposition analyses (ALMO-EDA), it is found that, independently of the number of carbon atoms and exchange-correlation functional, the dominant contributions to the interaction energies between water and polycyclic aromatic hydrocarbon molecules are the electrostatic and dispersion terms while polarization and charge transfer effects are negligibly small. Calculations carried out with GGA and meta-GGA functionals indicate that, as the number of carbon atoms increases, the interaction energies slowly converge to the corresponding values obtained for an infinite graphene sheet.

2.
J Chem Phys ; 147(16): 164120, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29096487

ABSTRACT

Singlet-triplet gaps in diradical organic π-systems are of interest in many applications. In this study, we calculate them in a series of molecules, including cyclobutadiene and its derivatives and cyclopentadienyl cation, by using correlated participating orbitals within the complete active space (CAS) and restricted active space (RAS) self-consistent field frameworks, followed by second-order perturbation theory (CASPT2 and RASPT2). These calculations are evaluated by comparison with the results of doubly electron-attached (DEA) equation-of-motion (EOM) coupled-cluster (CC) calculations with up to 4-particle-2-hole (4p-2h) excitations. We find active spaces that can accurately reproduce the DEA-EOMCC(4p-2h) data while being small enough to be applicable to larger organic diradicals.

3.
J Phys Chem A ; 121(18): 3469-3485, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28409643

ABSTRACT

The previously developed active-space doubly electron-attached (DEA) equation-of-motion (EOM) coupled-cluster (CC) method with up to four-particle-two-hole (4p-2h) excitations [Shen, J.; Piecuch, P. J. Chem. Phys. 2013, 138, 194102], which utilizes the idea of applying a linear electron-attaching operator to the CC ground state of an (N - 2)-electron closed-shell system to generate ground and excited states of the N-electron open-shell species of interest, has been extended to a considerably less expensive model, in which both 3p-1h and 4p-2h terms rather than 4p-2h contributions only are selected using active orbitals. As illustrated by the calculations involving low-lying singlet and triplet states of methylene, trimethylenemethane, cyclobutadiene, and cyclopentadienyl cation and bond breaking in F2, the proposed DEA-EOMCC method with the active-space treatment of 3p-1h and 4p-2h excitations and its lower-level counterpart neglecting 4p-2h contributions are capable of accurately reproducing the results obtained using their considerably more expensive parent counterparts with a full treatment of 3p-1h and full or active-space treatment of 4p-2h excitations.

4.
Bioorg Med Chem Lett ; 21(24): 7392-8, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22056745

ABSTRACT

3D-QSAR models of a series of fluorinated hexahydropyrimidine derivatives with cytotoxic activities have been developed using CoMFA and CoMSIA. These models provide a better understanding of the mechanism of action and structure-activity relationship of these compounds. By applying leave-one-out (LOO) cross validation study, the best predictive CoMFA model was achieved with 3 as the optimum number of components, which gave rise to a non-cross-validated r(2) value of 0.978, and standard error of estimate of 0.059, and F value of 144.492. Similarly, the best predictive CoMSIA model was derived with 4 as the number of components, r(2) value of 0.999, F value of 4381.143, and standard error of estimate, 0.011. The above models will inspire the design and synthesis of novel hexahydropyrimidines with enhanced potency and selectivity.


Subject(s)
Pyrimidines/chemistry , Quantitative Structure-Activity Relationship , Fluorine/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Pyrimidines/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...