ABSTRACT
Mexican Americans are disproportionally affected by metabolic dysfunction-associated steatotic liver disease (MASLD), which often co-occurs with diabetes. Despite extensive evidence on the causative role of the gut microbiome in MASLD, studies determining the involvement of the gut phageome are scarce. In this cross-sectional study, we characterized the gut phageome in Mexican Americans of South Texas by stool shotgun metagenomic sequencing of 340 subjects, concurrently screened for liver steatosis by transient elastography. Inter-individual variations in the phageome were associated with gender, country of birth, diabetes, and liver steatosis. The phage signatures for diabetes and liver steatosis were subsequently determined. Enrichment of Inoviridae was associated with both diabetes and liver steatosis. Diabetes was further associated with the enrichment of predominantly temperate Escherichia phages, some of which possessed virulence factors. Liver steatosis was associated with the depletion of Lactococcus phages r1t and BK5-T, and enrichment of the globally prevalent Crassvirales phages, including members of genus cluster IX (Burzaovirus coli, Burzaovirus faecalis) and VI (Kahnovirus oralis). The Lactococcus phages showed strong correlations and co-occurrence with Lactococcus lactis, while the Crassvirales phages, B. coli, B. faecalis, and UAG-readthrough crAss clade correlated and co-occurred with Prevotella copri. In conclusion, we identified the gut phageome signatures for two closely linked metabolic diseases with significant global burden. These phage signatures may have utility in risk modeling and disease prevention in this high-risk population, and identification of potential bacterial targets for phage therapy.IMPORTANCEPhages influence human health and disease by shaping the gut bacterial community. Using stool samples from a high-risk Mexican American population, we provide insights into the gut phageome changes associated with diabetes and liver steatosis, two closely linked metabolic diseases with significant global burden. Common to both diseases was an enrichment of Inoviridae, a group of phages that infect bacterial hosts chronically without lysis, allowing them to significantly influence bacterial growth, virulence, motility, biofilm formation, and horizontal gene transfer. Diabetes was additionally associated with the enrichment of Escherichia coli-infecting phages, some of which contained virulence factors. Liver steatosis was additionally associated with the depletion of Lactococcus lactis-infecting phages, and enrichment of Crassvirales phages, a group of virulent phages with high global prevalence and persistence across generations. These phageome signatures may have utility in risk modeling, as well as identify potential bacterial targets for phage therapy.
Subject(s)
Bacteriophages , Fatty Liver , Gastrointestinal Microbiome , Mexican Americans , Virome , Humans , Male , Female , Gastrointestinal Microbiome/genetics , Bacteriophages/genetics , Middle Aged , Virome/genetics , Fatty Liver/genetics , Cross-Sectional Studies , Adult , Diabetes Mellitus , Feces/microbiology , Feces/virology , AgedABSTRACT
The family Tymoviridae comprises positive-sense RNA viruses, which mainly infect plants. Recently, a few Tymoviridae-like viruses have been found in mosquitoes, which feed on vertebrate sources. We describe a novel Tymoviridae-like virus, putatively named, Guachaca virus (GUAV), isolated from Culex pipiens and Culex quinquefasciatus species of mosquitoes and collected in the rural area of Santa Marta, Colombia. After a cytopathic effect was observed in C6/36 cells, RNA was extracted and processed through the NetoVIR next-generation sequencing protocol, and data were analyzed through the VirMAP pipeline. Molecular and phenotypic characterization of the GUAV was achieved using a 5'/3' RACE, transmission electron microscopy, amplification in vertebrate cells, and phylogenetic analysis. A cytopathic effect was observed in C6/36 cells three days post-infection. The GUAV genome was successfully assembled, and its polyadenylated 3' end was corroborated. GUAV shared only 54.9% amino acid identity with its closest relative, Ek Balam virus, and was grouped with the latter and other unclassified insect-associated tymoviruses in a phylogenetic analysis. GUAV is a new member of a family previously described as comprising plant-infecting viruses, which seem to infect and replicate in mosquitoes. The sugar- and blood-feeding behavior of the Culex spp., implies a sustained contact with plants and vertebrates and justifies further studies to unravel the ecological scenario for transmission.
Subject(s)
Culex , Culicidae , Tymoviridae , Animals , Phylogeny , ColombiaABSTRACT
Coronavirus disease (COVID-19) in Colombia was first diagnosed in a traveler arriving from Italy on February 26, 2020. However, limited data are available on the origins and number of introductions of COVID-19 into the country. We sequenced the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from 43 clinical samples we collected, along with another 79 genome sequences available from Colombia. We investigated the emergence and importation routes for SARS-CoV-2 into Colombia by using epidemiologic, historical air travel, and phylogenetic observations. Our study provides evidence of multiple introductions, mostly from Europe, and documents >12 lineages. Phylogenetic findings validate the lineage diversity, support multiple importation events, and demonstrate the evolutionary relationship of epidemiologically linked transmission chains. Our results reconstruct the early evolutionary history of SARS-CoV-2 in Colombia and highlight the advantages of genome sequencing to complement COVID-19 outbreak investigations.
Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Genomics/methods , Phylogeny , SARS-CoV-2/genetics , Colombia/epidemiology , Humans , Reproducibility of ResultsABSTRACT
Severe respiratory syncytial virus (RSV) infection is a major cause of morbidity and mortality in infants <2 years-old. Here we describe that high-fiber diet protects mice from RSV infection. This effect was dependent on intestinal microbiota and production of acetate. Oral administration of acetate mediated interferon-ß (IFN-ß) response by increasing expression of interferon-stimulated genes in the lung. These effects were associated with reduction of viral load and pulmonary inflammation in RSV-infected mice. Type 1 IFN signaling via the IFN-1 receptor (IFNAR) was essential for acetate antiviral activity in pulmonary epithelial cell lines and for the acetate protective effect in RSV-infected mice. Activation of Gpr43 in pulmonary epithelial cells reduced virus-induced cytotoxicity and promoted antiviral effects through IFN-ß response. The effect of acetate on RSV infection was abolished in Gpr43-/- mice. Our findings reveal antiviral effects of acetate involving IFN-ß in lung epithelial cells and engagement of GPR43 and IFNAR.
Subject(s)
Acetates/pharmacology , Interferon Type I/metabolism , Microbiota , Receptors, G-Protein-Coupled/metabolism , Respiratory Syncytial Virus Infections/prevention & control , A549 Cells , Acetates/metabolism , Animals , Cell Line , Chlorocebus aethiops , Humans , Lung/drug effects , Lung/metabolism , Lung/virology , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Single Nucleotide , Protective Agents/metabolism , Protective Agents/pharmacology , Receptor, Interferon alpha-beta/genetics , Receptors, G-Protein-Coupled/genetics , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Vero Cells , Viral Load/drug effects , Viral Load/geneticsABSTRACT
Dengue virus (DENV) is the causative agent of one of the most important febrile illnesses worldwide. Four DENV serotypes are responsible for a broad clinical spectrum of the disease. Positive controls are costly and required for the validation of molecular test results of DENV serotyping. In this study, we describe the in silico design of the qDENV-Control plasmid with the target sequences to oligonucleotides and probes widely used for DENV serotyping, and the subsequent production of qDENV Control RNA by T7-driven run-off in vitro transcription. The qDENV Control RNA was successfully used to validate the positive and negative DENV serotyping results, allowing its incorporation in routine in-house protocols for virologic surveillance. This Control RNA allowed the absolute quantification of viral RNA copies from unknown samples as required in several fundamental studies.
Subject(s)
Dengue Virus/classification , RNA, Viral/analysis , RNA, Viral/genetics , Computer Simulation , DNA Primers/genetics , DNA Probes/genetics , Dengue/virology , Humans , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Serogroup , Serotyping , Transcription, GeneticABSTRACT
Dengue is hyperendemic in Colombia, where a cyclic behavior of serotype replacement leading to periodic epidemics has been observed for decades. This level of endemicity favors accumulation of dengue virus genetic diversity and could be linked to disease outcome. To assess the genetic diversity of dengue virus type 2 in Colombia, we sequenced the envelope gene of 24 virus isolates from acute cases of dengue or severe dengue fever during the period 2013-2016. The phylogenetic analysis revealed the circulation of the Asian-American genotype of dengue virus type 2 in Colombia during that period, the intra-genotype variability leading to divergence in two recently circulating lineages with differential geographic distribution, as well as the presence of nonsynonymous substitutions accompanying their emergence and diversification.
Subject(s)
Dengue Virus/genetics , Dengue/virology , Genetic Variation , Genotype , RNA, Viral/blood , Adolescent , Adult , Biological Specimen Banks , Child , Child, Preschool , Colombia/epidemiology , Dengue/epidemiology , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Phylogeny , RNA, Viral/genetics , Retrospective Studies , Serogroup , Viral Envelope Proteins/genetics , Young AdultABSTRACT
Microbiome composition has been associated to several inflammatory diseases, including asthma. There are few studies exploring the relationships of gut microbiota with airway obstruction pheonotypes in adult asthma, especially those living in the tropics. We sought to evaluate the relationships of gut microbiota with the airway obstruction and other variables of interest in asthmatic patients living in the tropics according to three phenotypes: No Airway Obstruction (NAO), Reversible Airway Obstruction (RAO) or Fixed Airway Obstruction (FAO). We found that Streptococcaceae:Streptococcus and Enterobacteriaceae:Escherichia-Shigella consistently discriminated asthmatic individuals suffering FAO from NAO or RAO, plus Veillonellaceae:Megasphaera when comparing FAO and RAO (p < 0.05; FDR < 0.05). In the FAO, the network showing the genus relations was less complex and interconnected. Several Rumminococcaceae, Lachnospiraceae and Clostridiales were enriched in patients with low specific IgE levels to mites and Ascaris. All patients shared a common exposure framework; control medication usage and smoking habit were uncommon and equally distributed between them. In conclusion, in this tropical asthmatic population, components of human gut microbiota are associated with the presence of a FAO phenotype and lower specific IgE response to mites and Ascaris.
Subject(s)
Asthma/microbiology , Asthma/physiopathology , Gastrointestinal Microbiome , Lung/physiopathology , Tropical Climate , Adult , Biodiversity , Female , Humans , Male , PhenotypeABSTRACT
The oral microbiome has been linked to a number of chronic inflammatory conditions, including obesity, diabetes, periodontitis, and cancers of the stomach and liver. These conditions disproportionately affect Mexican American women, yet few studies have examined the oral microbiota in this at-risk group. We characterized the 16S rDNA oral microbiome in 369 non-smoking women enrolled in the MD Anderson Mano a Mano Mexican American Cohort Study. Lower bacterial diversity, a potential indicator of oral health, was associated with increased age and length of US residency among recent immigrants. Grouping women by overarching bacterial community type (e.g., "Streptococcus," "Fusobacterium," and "Prevotella" clusters), we observed differences across a number of acculturation-related variables, including nativity, age at immigration, time in the US, country of longest residence, and a multi-dimensional acculturation scale. Participants in the cluster typified by higher abundance of Streptococcus spp. exhibited the lowest bacterial diversity and appeared the most acculturated as compared to women in the "Prevotella" group. Computationally-predicted functional analysis suggested the Streptococcus-dominated bacterial community had greater potential for carbohydrate metabolism while biosynthesis of essential amino acids and nitrogen metabolism prevailed among the Prevotella-high group. Findings suggest immigration and adaption to life in the US, a well-established mediator of disease risk, is associated with differences in oral microbial profiles in Mexican American women. These results warrant further investigation into the joint and modifying effects of acculturation and oral bacteria on the health of Mexican American women and other immigrant populations. The oral microbiome presents an easily accessible biomarker of disease risk, spanning biological, behavioral, and environmental factors.
Subject(s)
Acculturation , Fusobacterium/isolation & purification , Mexican Americans , Microbiota/physiology , Mouth/microbiology , Prevotella/isolation & purification , Streptococcus/isolation & purification , Adult , Aged , Emigrants and Immigrants , Female , Humans , Middle Aged , Young AdultABSTRACT
HIV infection has a tremendous impact on the immune system's proper functioning. The mucosa-associated lymphoid tissue (MALT) is significantly disarrayed during HIV infection. Compositional changes in the gut microbiota might contribute to the mucosal barrier disruption, and consequently to microbial translocation. We performed an observational, cross-sectional study aimed at evaluating changes in the fecal microbiota of HIV-infected individuals from Colombia. We analyzed the fecal microbiota of 37 individuals via 16S rRNA gene sequencing; 25 HIV-infected patients and 12 control (non-infected) individuals, which were similar in body mass index, age, gender balance and socioeconomic status. To the best of our knowledge, no such studies have been conducted in Latin American countries. Given its compositional nature, microbiota data were normalized and transformed using Aitchison's Centered Log-Ratio. Overall, a change in the network structure in HIV-infected patients was revealed by using the SPIEC-EASI MB tool. Genera such as Blautia, Dorea, Yersinia, Escherichia-Shigella complex, Staphylococcus, and Bacteroides were highly relevant in HIV-infected individuals. Differential abundance analysis by both sparse Partial Least Square-Discriminant Analysis and Random Forest identified a greater abundance of Lachnospiraceae-OTU69, Blautia, Dorea, Roseburia, and Erysipelotrichaceae in HIV-infected individuals. We show here, for the first time, a predominantly Lachnospiraceae-based signature in HIV-infected individuals.
Subject(s)
Clostridiaceae , Feces/microbiology , Gastrointestinal Microbiome , HIV Infections/epidemiology , Adolescent , Adult , Biodiversity , Case-Control Studies , Clostridiaceae/classification , Clostridiaceae/genetics , Colombia/epidemiology , Female , HIV Infections/diagnosis , HIV Infections/immunology , HIV Infections/virology , Humans , Male , Metagenome , Metagenomics/methods , Middle Aged , RNA, Ribosomal, 16S/genetics , Severity of Illness Index , Young AdultABSTRACT
BACKGROUND: Noroviruses (NoVs) are the most common cause of epidemic gastroenteritis, responsible for at least 50% of all gastroenteritis outbreaks worldwide and were recently identified as a leading cause of travelers' diarrhea (TD) in US and European travelers to Mexico, Guatemala, and India. METHODS: Serum and diarrheic stool samples were collected from 75 US student travelers to Cuernavaca, Mexico, who developed TD. NoV RNA was detected in acute diarrheic stool samples using reverse transcription-polymerase chain reaction (RT-PCR). Serology assays were performed using GI.1 Norwalk virus (NV) and GII.4 Houston virus (HOV) virus-like particles (VLPs) to measure serum levels of immunoglobulin A (IgA) and IgG by dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA); serum IgM was measured by capture enzyme-linked immunosorbent assay (ELISA), and the 50% antibody-blocking titer (BT50 ) was determined by a carbohydrate-blocking assay. RESULTS: NoV infection was identified in 12 (16%; 9 GI-NoV and 3 GII-NoV) of 75 travelers by either RT-PCR or fourfold or more rise in antibody titer. Significantly more individuals had detectable preexisting IgA antibodies against HOV (62/75, 83%) than against NV (49/75, 65%) (p = 0.025) VLPs. A significant difference was observed between NV- and HOV-specific preexisting IgA antibody levels (p = 0.0037), IgG (p = 0.003), and BT50 (p = <0.0001). None of the NoV-infected TD travelers had BT50 > 200, a level that has been described previously as a possible correlate of protection. CONCLUSIONS: We found that GI-NoVs are commonly associated with TD cases identified in US adults traveling to Mexico, and seroprevalence rates and geometric mean antibody levels to a GI-NoV were lower than to a GII-NoV strain.
Subject(s)
Diarrhea , Norovirus/isolation & purification , Travel , Adult , Diarrhea/blood , Diarrhea/epidemiology , Diarrhea/physiopathology , Diarrhea/virology , Disease Outbreaks , Feces/virology , Female , Gastroenteritis/blood , Gastroenteritis/epidemiology , Gastroenteritis/physiopathology , Gastroenteritis/virology , Humans , Immunoassay/methods , Immunoglobulins/blood , Male , Mexico/epidemiology , Outcome Assessment, Health Care , Reverse Transcriptase Polymerase Chain Reaction/methods , Seroepidemiologic Studies , Serologic Tests/methods , United States/epidemiologyABSTRACT
BACKGROUND: Molecular characterization of Escherichia coli with use of the random amplified polymorphic DNA (RAPD) assay allows the determination of clonal origin and geographic clustering. METHODS: Presumed enterotoxigenic Escherichia coli (ETEC) from 213 adults with travelers' diarrhea acquired in Mexico during the summer months of 2004-2007 were studied. Biochemical testing strips determined a 7-digit fingerprint on the basis of 21 biochemical reactions. E. coli producing enterotoxin were evaluated for clonality by RAPD assay. Dendrograms were developed using Pearson correlations with 80% similarity to determine clonal groups. RESULTS: Of the presumed ETEC, 85% were confirmed to be E. coli on the basis of biochemical analysis. Other enterotoxigenic bacteria included Citrobacter species (9%) and other coliforms (all 2%). RAPD analysis with primers 1247 and 1254 determined 24 ETEC clonal groups containing 2-9 subjects each, of which 15 spanned the 4 years and 8 spanned both cities. CONCLUSIONS: Complete biochemical evaluation of E. coli-like, enterotoxigenic organisms is crucial in ETEC identification. In addition, other enterotoxigenic organisms identified should be studied further for their role in enteric disease. Travelers to Mexico are exposed to a large pool of different ETEC strains from multiple sources, with a small number of dominant types showing a widespread and persistent reservoir of infection.
Subject(s)
Diarrhea/epidemiology , Diarrhea/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterotoxigenic Escherichia coli/classification , Enterotoxigenic Escherichia coli/genetics , Genetic Variation , Adult , Bacterial Typing Techniques , Cities , Citrobacter/isolation & purification , Cluster Analysis , DNA Fingerprinting , DNA, Bacterial/genetics , Enterotoxigenic Escherichia coli/isolation & purification , Genotype , Humans , Mexico/epidemiology , Molecular Epidemiology , Random Amplified Polymorphic DNA Technique , Students , Travel , United States/epidemiologyABSTRACT
Noroviruses (NoVs) are increasingly being recognized as an important enteric pathogen of gastroenteritis worldwide. The prevalence of NoVs as a cause of diarrhea acquired by travelers in developing countries is not well known. We examined the prevalence and importance of NoV infection in three international traveler cohorts with diarrhea acquired in three developing regions of the world, Mexico, Guatemala, and India. We also characterized the demographics and symptoms associated with NoV diarrhea in these travelers. Stool samples from 571 international travelers with diarrhea were evaluated for traditional enteropathogens. NoVs were identified using reverse transcription-PCR and probe hybridization. NoVs were identified in 10.2% of cases of travelers' diarrhea and, overall, was the second most common pathogen, following diarrheagenic Escherichia coli. The detection of NoV diarrhea significantly varied over the three study time periods in Guadalajara, Mexico, ranging from 3 of 98 (3.0%) diarrheal stools to 12 of 100 (12.0%) fecal specimens (P=0.03). The frequency of NoV diarrhea was also dependent upon the geographic region, with 17 of 100 (17.0%) travelers to Guatemala, 23 of 194 (11.9%) travelers to India, and 3 of 79 (3.8%) travelers to Mexico testing positive for NoVs from 2002 to 2003 (P=0.02). NoVs are important pathogens of travelers' diarrhea in multiple regions of the world. Significant variation in the prevalence of NoV diarrhea and in the predominant genogroup infecting travelers was demonstrated, dependent upon the specific geographic location and over time.