Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cosmet Sci ; 43(1): 57-67, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33038019

ABSTRACT

OBJECTIVE: In the present study, we describe the features and functional properties of a new powder cosmetic ingredient, an amorphous mesoporous magnesium carbonate (MMC, also named Upsalite® ) with regard to physical characteristics as well as functional attributes. METHODS: Physical and functional characterization of MMC, as compared to other common powder cosmetic ingredients (silica, mica, kaolin, talc and starch), was assessed using nitrogen gas adsorption, powder X-ray diffraction, particle size distribution by laser diffraction, scanning electron microscopy (SEM), and oil and moisture uptake tests. The powder ingredients were also applied on human skin and analysed for short- and long-term mattifying effect, and a new method was developed to measure flashback effect. MMC was tested for skin irritation using an in vitro cell model as well as in vivo, through the Human Repeated Insult Patch Test on 50 human volunteers. RESULTS: Mesoporous magnesium carbonate has a high surface area and pore volume. It has an excellent absorption capacity and can take up both oil and water simultaneously. It provides instant and long-lasting mattifying effect when applied on human skin without drying or irritating skin and exhibits no measured flashback effect. CONCLUSION: Mesoporous magnesium carbonate has good sensory and visual characteristics as well as excellent absorbing and mattifying properties, suggesting that it has great potential to replace other powder ingredients currently used as fillers and absorbers in powder cosmetics.


OBJECTIF: Dans cette étude, nous décrivons les particularités et les propriétés fonctionnelles d'un nouvel ingrédient pour les poudres cosmétiques, le carbonate de magnésium mésoporeux amorphe (MMC, également appelé Upsalite®), en ce qui concerne ses caractéristiques physiques ainsi que ses attributs fonctionnels. MÉTHODES: La caractérisation physique et fonctionnelle du MMC, par rapport aux autres ingrédients courants dans les poudres cosmétiques (silice, mica, kaolin, talc, amidon), a été effectuée en employant l'adsorption d'azote gazeux, la diffraction des rayons X sur poudre, la distribution granulométrique par diffraction laser, la microscopie électronique à balayage (MEB) et des tests d'absorption d'huile et d'humidité. Les ingrédients pour la poudre ont aussi été appliqués sur la peau humaine et analysés quant à l'effet matifiant à court et à long terme, et une méthode nouvelle a été développée pour mesurer la réflexion en photographie au flash, l'effet « flashback ¼. Le MMC a été testé pour l'irritation cutanée par l'utilisation d'un modèle cellulaire in vitro ainsi qu'in vivo, par le test Human Repeated Insult Patch sur 50 volontaires humains. RÉSULTATS: Le carbonate de magnésium mésoporeux a une surface et un volume de pores élevés. Il a une excellente capacité d'absorption et peut absorber l'huile et l'eau simultanément. Il fournit un effet matifiant instantané et durable lorsqu'on l'applique sur la peau humaine, sans assécher ou irriter la peau, et n'a présenté aucun effet flashback dans nos mesures. CONCLUSION: Le carbonate de magnésium mésoporeux a de bonnes caractéristiques sensorielles et visuelles ainsi que d'excellentes propriétés absorbantes et matifiantes, ce qui suggère un grand potentiel pour remplacer d'autres ingrédients qui sont actuellement utilisés comme substances de remplissage et matériaux absorbants dans les poudres cosmétiques.


Subject(s)
Cosmetics/chemistry , Magnesium/chemistry , Powders/chemistry , Humans , Irritants/pharmacology , Porosity , Powder Diffraction , Skin/drug effects
2.
J Mech Behav Biomed Mater ; 79: 46-52, 2018 03.
Article in English | MEDLINE | ID: mdl-29272812

ABSTRACT

Calcium phosphate cements (CPCs) are clinically used as injectable materials to fill bone voids and to improve hardware fixation in fracture surgery. In vivo they are dynamically loaded; nonetheless little is known about their fatigue properties. The aim of this study was to, for the first time, investigate the fatigue performance of a high-strength, degradable (brushitic) CPC, and also evaluate the effect of cement porosity (by varying the liquid to powder ratio, L/P) and the environment (air at room temperature or in a phosphate buffered saline solution, PBS, at 37°C) on the fatigue life. At a maximum compressive stress level of 15MPa, the cements prepared with an L/P-ratio of 0.22 and 0.28ml/g, corresponding to porosities of approximately 12% and 20%, had a 100% probability of survival until run-out of 5 million cycles, in air. When the maximum stress level, or the L/P-ratio, was increased, the probability of survival decreased. Testing in PBS at 37°C led to more rapid failure of the specimens. However, the high-strength cement had a 100% probability of survival up to approximately 2.5 million cycles at a maximum compressive stress level of 10MPa in PBS, which is substantially higher than some in vivo stress levels, e.g., those found in the spine. At 5MPa in PBS, all specimens survived to run-out. The results found herein are important if clinical use of the material is to increase, as characterisation of the fatigue performance of CPCs is largely lacking from the literature.


Subject(s)
Bone Cements , Calcium Phosphates , Compressive Strength , Stress, Mechanical , Materials Testing
3.
J Mech Behav Biomed Mater ; 74: 428-437, 2017 10.
Article in English | MEDLINE | ID: mdl-28735216

ABSTRACT

Calcium phosphate cements (CPCs) should ideally have mechanical properties similar to those of the bone tissue the material is used to replace or repair. Usually, the compressive strength of the CPCs is reported and, more rarely, the elastic modulus. Conversely, scarce or no data are available on Poisson's ratio and strain-to-crack-initiation. This is unfortunate, as data on the elastic response is key to, e.g., numerical model accuracy. In this study, the compressive behaviour of brushite, monetite and apatite cements was fully characterised. Measurement of the surface strains was done using a digital image correlation (DIC) technique, and compared to results obtained with the commonly used built-in displacement measurement of the materials testers. The collected data showed that the use of fixed compression platens, as opposed to spherically seated ones, may in some cases underestimate the compressive strength by up to 40%. Also, the built-in measurements may underestimate the elastic modulus by up to 62% as compared to DIC measurements. Using DIC, the brushite cement was found to be much stiffer (24.3 ± 2.3GPa) than the apatite (13.5 ± 1.6GPa) and monetite (7.1 ± 1.0GPa) cements, and elastic moduli were inversely related to the porosity of the materials. Poisson's ratio was determined to be 0.26 ± 0.02 for brushite, 0.21 ± 0.02 for apatite and 0.20 ± 0.03 for monetite. All investigated CPCs showed low strain-to-crack-initiation (0.17-0.19%). In summary, the elastic modulus of CPCs is substantially higher than previously reported and it is concluded that an accurate procedure is a prerequisite in order to properly compare the mechanical properties of different CPC formulations. It is recommended to use spherically seated platens and measuring the strain at a relevant resolution and on the specimen surface.


Subject(s)
Bone Cements/analysis , Calcium Phosphates/analysis , Materials Testing , Apatites , Compressive Strength , Elastic Modulus
4.
J Mater Sci Mater Med ; 28(3): 41, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28144853

ABSTRACT

Calcium phosphate cements (CPCs) are synthetic bone grafting materials that can be used in fracture stabilization and to fill bone voids after, e.g., bone tumour excision. Currently there are several calcium phosphate-based formulations available, but their use is partly limited by a lack of knowledge of their mechanical properties, in particular their resistance to mechanical loading over longer periods of time. Furthermore, depending on, e.g., setting conditions, the end product of acidic CPCs may be mainly brushite or monetite, which have been found to behave differently under quasi-static loading. The objectives of this study were to evaluate the compressive fatigue properties of acidic CPCs, as well as the effect of phase composition on these properties. Hence, brushite cements stored for different lengths of time and with different amounts of monetite were investigated under quasi-static and dynamic compression. Both storage and brushite-to-monetite phase transformation was found to have a pronounced effect both on quasi-static compressive strength and fatigue performance of the cements, whereby a substantial phase transformation gave rise to a lower mechanical resistance. The brushite cements investigated in this study had the potential to survive 5 million cycles at a maximum compressive stress of 13 MPa. Given the limited amount of published data on fatigue properties of CPCs, this study provides an important insight into the compressive fatigue behaviour of such materials.


Subject(s)
Bone Cements/chemistry , Bone and Bones/drug effects , Calcium Phosphates/chemistry , Animals , Compressive Strength , Humans , Hydrogen-Ion Concentration , Materials Testing , Powders , Pressure , Stress, Mechanical , X-Ray Diffraction
5.
J Mech Behav Biomed Mater ; 60: 617-627, 2016 07.
Article in English | MEDLINE | ID: mdl-27082025

ABSTRACT

Calcium phosphate cements (CPCs) are widely used in bone repair. Currently there are two main types of CPCs, brushite and apatite. The aim of this project was to evaluate the mechanical properties of particularly promising experimental brushite and apatite formulations in comparison to commercially available brushite- and apatite-based cements (chronOS(™) Inject and Norian(®) SRS(®), respectively), and in particular evaluate the diametral tensile strength and biaxial flexural strength of these cements in both wet and dry conditions for the first time. The cements׳ porosity and their compressive, diametral tensile and biaxial flexural strength were tested in wet (or moist) and dry conditions. The surface morphology was characterized by scanning electron microscopy. Phase composition was assessed with X-ray diffraction. It was found that the novel experimental cements showed better mechanical properties than the commercially available cements, in all loading scenarios. The highest compressive strength (57.2±6.5MPa before drying and 69.5±6.0MPa after drying) was found for the experimental brushite cement. This cement also showed the highest wet diametral tensile strength (10.0±0.8MPa) and wet biaxial flexural strength (30.7±1.8MPa). It was also the cement that presented the lowest porosity (approx. 12%). The influence of water content was found to depend on cement type, with some cements showing higher mechanical properties after drying and some no difference after drying.


Subject(s)
Bone Cements , Calcium Phosphates , Compressive Strength , Tensile Strength , Materials Testing
6.
Biomed Res Int ; 2015: 575079, 2015.
Article in English | MEDLINE | ID: mdl-26587540

ABSTRACT

Bone loss and fractures may call for the use of bone substituting materials, such as calcium phosphate cements (CPCs). CPCs can be degradable, and, to determine their limitations in terms of applications, their mechanical as well as chemical properties need to be evaluated over longer periods of time, under physiological conditions. However, there is lack of data on how the in vitro degradation affects high-strength brushite CPCs over longer periods of time, that is, longer than it takes for a bone fracture to heal. This study aimed at evaluating the long-term in vitro degradation properties of a high-strength brushite CPC in three different solutions: water, phosphate buffered saline, and a serum solution. Microcomputed tomography was used to evaluate the degradation nondestructively, complemented with gravimetric analysis. The compressive strength, chemical composition, and microstructure were also evaluated. Major changes from 10 weeks onwards were seen, in terms of formation of a porous outer layer of octacalcium phosphate on the specimens with a concomitant change in phase composition, increased porosity, decrease in object volume, and mechanical properties. This study illustrates the importance of long-term evaluation of similar cement compositions to be able to predict the material's physical changes over a relevant time frame.


Subject(s)
Calcium Phosphates/chemistry , Dental Cements/chemistry , Serum/chemistry , Animals , Cattle , Humans
7.
J Biomater Appl ; 30(5): 526-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26163278

ABSTRACT

The porosity of a calcium phosphate cement is a key parameter as it affects several important properties of the cement. However, a successful, non-destructive porosity measurement method that does not include drying has not yet been reported for calcium phosphate cements. The aim of this study was to evaluate isopropanol solvent exchange as such a method. Two different types of calcium phosphate cements were used, one basic (hydroxyapatite) and one acidic (brushite). The cements were allowed to set in an aqueous environment and then immersed in isopropanol and stored under three different conditions: at room temperature, at room temperature under vacuum (300 mbar) or at 37℃. The specimen mass was monitored regularly. Solvent exchange took much longer time to reach steady state in hydroxyapatite cements compared to brushite cements, 350 and 18 h, respectively. Furthermore, the immersion affected the quasi-static compressive strength of the hydroxyapatite cements. However, the strength and phase composition of the brushite cements were not affected by isopropanol immersion, suggesting that isopropanol solvent exchange can be used for brushite calcium phosphate cements. The main advantages with this method are that it is non-destructive, fast, easy and the porosity can be evaluated while the cements remain wet, allowing for further analysis on the same specimen.


Subject(s)
Bone Cements/chemistry , Calcium Phosphates/chemistry , Hydroxyapatites/chemistry , Compressive Strength , Materials Testing , Porosity
8.
Biomech Model Mechanobiol ; 13(6): 1199-207, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24659042

ABSTRACT

Acrylic bone cements are widely used for fixation of joint prostheses as well as for vertebral body augmentation procedures of vertebroplasty and balloon kyphoplasty, with the cement zone(s) being subjected to repeated mechanical loading in each of these applications. Although, in vertebroplasty and balloon kyphoplasty, the cement zone is exposed to mainly cyclical compressive load, the compressive fatigue properties of acrylic bone cements used in these procedures are yet to be determined. The purposes of the present study were to determine the compressive fatigue properties of a commercially available cement brand used in vertebroplasty, including the effect of frequency on these properties; to identify the cement failure modes under compressive cyclical load; and to introduce a screening method that may be used to shorten the lengthy character of the standardized fatigue tests. Osteopal[Formula: see text] was used as the model cement in this study. The combinations of maximum stress and frequency used were 50.0, 55.0, 60.0, 62.5 and 75.5 MPa at 2 Hz; and of 40.0, 55.0, 60.0, 62.5 or 75.5 MPa at 10 Hz. Through analysis of nominal strain-number of loading cycles results, three cement failure modes were identified. The estimated mean fatigue limit at 2 Hz (55.4 MPa) was significantly higher than that at 10 Hz (41.1 MPa). The estimated fatigue limit at 2 Hz is much higher than stresses commonly found in the spine and also higher than that for other acrylic bone cements tested in a full tension-compression fatigue test, which indicates that tension-compression fatigue testing may substantially underestimate the performance of cements intended for vertebroplasty. A screening method was introduced which may be used to shorten the time spent in performing compressive fatigue tests on specimens of acrylic bone cement for use in vertebral body augmentation procedures.


Subject(s)
Compressive Strength , Materials Testing/methods , Polymethyl Methacrylate/chemistry , Stress, Mechanical , Vertebroplasty/methods , Confidence Intervals
SELECTION OF CITATIONS
SEARCH DETAIL
...