Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Radioact ; 196: 104-112, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30447553

ABSTRACT

This study develops a numerical model for predicting radon effective diffusivity tensor for fractured rocks using a two dimensional discrete fracture network (DFN) model. This is motivated by the limitations of existing techniques in predicting the radon diffusion coefficient for the fractured zones of cave mines. These limitations include access to the fractured zones for the purpose of conducting field studies as well as replication of the degree of fracturing in these zones for laboratory studies. The caving of a rock mass involves the fracturing and breaking of intact and naturally fractured rock, which creates migration pathways for radon gas trapped within uranium-rich rock. Therefore, this study develops a stochastic DFN model with equations derived from radon transport to predict diffusivity. Our simulation results reveal the establishment of a representative elementary volume (REV) for diffusivity tensor; approximately equal principal and cross diffusivity magnitudes for each of the DFN domain; a range of diffusivity with porosity (calculated based on the fractures in the domain); and a significant effect of fracture density on diffusivity tensor. These results are essential in developing proactive measures for mitigation of radon gas in cave mines.


Subject(s)
Air Pollution, Radioactive/statistics & numerical data , Caves , Models, Chemical , Radiation Monitoring , Radon/analysis , Air Pollution, Radioactive/analysis , Mining
SELECTION OF CITATIONS
SEARCH DETAIL