Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 221: 113011, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403419

ABSTRACT

Controlling protein adsorption on biomaterial surfaces requires a thorough understanding of interfacial phenomena. Proteins adhering after implantation influence successful biointegration. Deciphering adsorption mechanisms at biointerfaces is crucial and of high interest. Here, a combination of time-resolved in situ electrokinetic measurements and quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to understand the adsorption phenomena of blood proteins at thin layers of polysaccharide-based biointerfaces. Adsorption kinetics of bovine serum albumin (BSA), fibrinogen (Fg), and γ-globulin (γG) was studied on polydimethylsiloxane (PDMS) coatings functionalised with chitosan-surfactant complex and hyaluronic acid. The functionalised surfaces show a suppressed protein affinity compared to hydrophobic PDMS. Fg exhibits peculiar adsorption behaviour on PDMS, stemming from the highly oriented end-on adsorption with freely moving α chains. BSA demonstrates arbitrary surface orientation, while γG shows preferential surface orientation on PDMS, exposing a higher density of cationic moieties. The combination of the mentioned techniques proved beneficial for the investigation of interactions, orientations, and changes at biointerfaces in real-time. The approach is versatile and promising where research on surfaces and interfaces is in high demand.


Subject(s)
Hemostatics , Quartz Crystal Microbalance Techniques , Polysaccharides , Adsorption , Dimethylpolysiloxanes , Serum Albumin, Bovine , gamma-Globulins , Fibrinogen , Excipients
2.
ACS Appl Mater Interfaces ; 14(3): 3726-3739, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35014252

ABSTRACT

The path to greater sustainability and the development of polymeric drug delivery systems requires innovative approaches. The adaptation and use of biobased materials for applications such as targeted therapeutic delivery is, therefore, in high demand. A crucial part of this relates to the development of porous and hollow structures that are biocompatible, pH-responsive, deliver active substances, and contribute to pain relief, wound healing, tissue regeneration, and so forth. In this study, we developed a facile single-step and water-based method for the fabrication of hollow spherical cellulose beads for targeted drug release in response to external pH stimuli. Through base-catalyzed deprotection, hydrophobic solid and spherical cellulose acetate beads are transformed into hydrophilic cellulose structures with a hollow interior (wall thickness: 150 µm and inner diameter: 650 µm) by a stepwise increment of temperature and treatment time. Besides the pH-responsive fluid uptake properties, the hollow cellulose structures exhibit a maximum encapsulation efficiency of 20-85% diclofenac (DCF), a nonsteroidal anti-inflammatory drug, used commonly to treat pain and inflammatory diseases. The maximum amount of DCF released in vitro increased from 20 to 100% when the pH of the release medium increased from pH 1.2 to 7.4. As for the DCF release patterns and kinetic models at specific pH values, the release showed a diffusion- and swelling-controlled profile, effortlessly fine-tuned by external environmental pH stimuli. Overall, we show that the modified beads exhibit excellent characteristics for transport across the gastrointestinal tract and enhance the bioavailability of the drug. Their therapeutic efficacy and biocompatibility are also evident from the studies on human fibroblast cells. We anticipate that this platform could support and inspire the development of novel sustainable and effective polysaccharide-based delivery systems.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biocompatible Materials/chemistry , Cellulose/chemistry , Diclofenac/pharmacology , Inflammation/drug therapy , Pain/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Diclofenac/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Materials Testing , Molecular Structure , Particle Size , Porosity , Surface Properties
3.
Materials (Basel) ; 14(16)2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34443242

ABSTRACT

Chitosan (Chi) and 77KS, a lysine-derived surfactant, form polyelectrolyte complexes that reverse their charge from positive to negative at higher 77KS concentrations, forming aggregates that have been embedded with amoxicillin (AMOX). Dispersion of this complex was used to coat polydimethylsiloxane (PDMS) films, with an additional layer of anionic and hydrophilic hyaluronic acid (HA) as an outer adsorbate layer to enhance protein repulsion in addition to antimicrobial activity by forming a highly hydrated layer in combination with steric hindrance. The formed polysaccharide-based bilayer on PDMS was analyzed by water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and surface zeta (ζ)-potential. All measurements show the existence and adhesion of the two layers on the PDMS surface. Part of this study was devoted to understanding the underlying protein adsorption phenomena and identifying the mechanisms associated with biofouling. Thus, the adsorption of a mixed-protein solution (bovine serum albumin, fibrinogen, γ-globulin) on PDMS surfaces was studied to test the antifouling properties. The adsorption experiments were performed using a quartz crystal microbalance with dissipation monitoring (QCM-D) and showed improved antifouling properties by these polysaccharide-based bilayer coatings compared to a reference or for only one layer, i.e., the complex. This proves the benefit of a second hyaluronic acid layer. Microbiological and biocompatibility tests were also performed on real samples, i.e., silicone discs, showing the perspective of the prepared bilayer coating for medical devices such as prostheses, catheters (balloon angioplasty, intravascular), delivery systems (sheaths, implants), and stents.

4.
ACS Appl Mater Interfaces ; 13(20): 23352-23368, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33998809

ABSTRACT

Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption are the prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer a promising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to research and develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties in contact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-free polyelectrolyte-surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionic surfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria. We successfully introduced the PESC as bioactive functional nanolayers on the "model" and "real" polydimethylsiloxane (PDMS) surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly deposited nanolayers (thickness: 44-61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serum albumin, fibrinogen, and γ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartz crystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ: -19 to -30 mV at pH 7.4), water content (1628-1810 ng cm-2), and hydration (low viscosity and elastic shear modulus) correlated with the mass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed that the charged nanolayers actively inhibited the growth of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatings with simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leading to a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Coated Materials, Biocompatible , Prostheses and Implants/microbiology , Surface-Active Agents , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Lysine/chemistry , Lysine/pharmacology , Nanomedicine , Nanostructures/chemistry , Proteins/chemistry , Silicon , Staphylococcus aureus/drug effects , Surface Properties , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
5.
Carbohydr Polym ; 232: 115817, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31952614

ABSTRACT

Chitosan (Chi) and anionic surfactant derived from lysine (77KS) were used to prepare a novel bioactive coating and as a drug delivery system for amoxicillin (AMOX) on a model polydimethylsiloxane (PDMS) surface. The bioactive coating was formulated as polyelectrolyte-surfactant complex (PESC). Aggregation behaviour between the cationic Chi and oppositely charged 77KS in bulk was analysed using turbidity and ζ-potential measurement. Furthermore, the adsorption and stability of the formulations were evaluated using quartz crystal microbalance with dissipation (QCM-D). The effect of the ionic strength and of the ultraviolet/ozone (UVO) activation of the PDMS films on the adsorption behaviour of the PESC complex was also examined. QCM-D monitoring showed stable adsorption of bare and AMOX-loaded complex on non-activated PDMS films, while the coating on UVO-activated PDMS samples desorbed after the rinsing step. Finally, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed successful and homogenously distributed compounds.


Subject(s)
Chitosan/chemistry , Coated Materials, Biocompatible/chemistry , Lysine/chemistry , Silicones/chemistry , Surface-Active Agents/chemistry , Amoxicillin/chemistry , Anti-Bacterial Agents/chemistry , Humans , Molecular Structure , Surface Properties
6.
Materials (Basel) ; 12(13)2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31266201

ABSTRACT

The present paper reports a novel method to improve the properties of polyethylene (PE) and polypropylene (PP) polymer foils suitable for applications in food packaging. It relates to the adsorption of chitosan-colloidal systems onto untreated and oxygen plasma-treated foil surfaces. It is hypothesized that the first coated layer of chitosan macromolecular solution enables excellent antibacterial properties, while the second (uppermost) layer contains a network of polyphenol resveratrol, embedded into chitosan nanoparticles, which enables antioxidant and antimicrobial properties simultaneously. X-ray photon spectroscopy (XPS) and infrared spectroscopy (FTIR) showed successful binding of both coatings onto foils as confirmed by gravimetric method. In addition, both attached layers (chitosan macromolecular solution and dispersion of chitosan nanoparticles with incorporated resveratrol) onto foils reduced oxygen permeability and wetting contact angle of foils; the latter indicates good anti-fog foil properties. Reduction of both oxygen permeability and wetting contact angle is more pronounced when foils are previously activated by O2 plasma. Moreover, oxygen plasma treatment improves stability and adhesion of chitosan structured adsorbates onto PP and PE foils. Foils also exhibit over 90% reduction of Staphylococcus aureus and over 77% reduction of Escherichia coli as compared to untreated foils and increase antioxidant activity for over a factor of 10. The present method may be useful in different packaging applications such as food (meat, vegetables, dairy, and bakery products) and pharmaceutical packaging, where such properties of foils are desired.

7.
Materials (Basel) ; 12(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871195

ABSTRACT

Silicones are widely used medical materials that are also applied for tympanostomy tubes with a trending goal to functionalise the surface of the latter to enhance the healing of ear inflammations and other ear diseases, where such medical care is required. This study focuses on silicone surface treatment with various antimicrobial coatings. Polysaccharide coatings in the form of chitosan nanoparticles alone, or with an embedded drug mixture composed of amoxicillin/clavulanic acid (co-amoxiclav) were prepared and applied onto silicone material. Plasma activation was also used as a pre-treatment for activation of the material's surface for better adhesion of the coatings. The size of the nanoparticles was measured using the DLS method (Dynamic Light Scattering), stability of the dispersion was determined with zeta potential measurements, whilst the physicochemical properties of functionalised silicone materials were examined using the UV-Vis method (Ultraviolet-Visible Spectroscopy), SEM (Scanning Electron Microscopy), XPS (X-Ray Photoelectron Spectroscopy). Moreover, in vitro drug release testing was used to follow the desorption kinetics and antimicrobial properties were tested by a bacterial cell count reduction assay using the standard gram-positive bacteria Staphylococcus aureus. The results show silicone materials as suitable materials for tympanostomy tubes, with the coating developed in this study showing excellent antimicrobial and biofilm inhibition properties. This implies a potential for better healing of ear inflammation, making the newly developed approach for the preparation of functionalised tympanostomy tubes promising for further testing towards clinical applications.

8.
Nanomaterials (Basel) ; 9(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736282

ABSTRACT

Due to the extreme rise of sludge pollution with heavy metals (e.g. copper), the options for its disposal or treatment are decreasing. On the contrary, properly heavy metal-cleaned sludge can be used as an alternative sustainable energy and agriculture source. The aim of this study was to develop a novel nanoadsorbent, based on irreversibly linked amino-rich polymer onto previously silica-coated magnetic nanoparticles (MNPs) that can be applied efficiently for metal removal. MNPs were coated uniformly by 3 nm thick silica layer (core-shell structure), and were additionally modified with systematic covalent attachment of derived branched polyethyleneimine (bPEI). The formed structure of synthesized MNPs composite was confirmed with several analytical techniques. Importantly, nanoadsorbents exhibit high density of chelating amino groups and large magnetic force for easier separation. The importance of introduced bPEI, effect of pH, initial heavy metal concentration onto copper uptake efficiency and, further, nanoadsorbent regeneration, were studied and explained in detail. The adsorption isotherm was well fitted with Langmuir model, and the maximum adsorption capacity was shown to be 143 mg·g¹ for Cu2+. The reusability and superior properties of silica-coated MNPs functionalized with derived-bPEI for copper adsorption underlie its potential for the removal application from heavy metals contaminated sludge.

9.
J Environ Manage ; 183(Pt 3): 1009-1025, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27692514

ABSTRACT

After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low-pressure technology to prevent odorous gasses from spreading into the environment. There are presented two new technologies: a) Sewage sludge or digestate drying in the vacuum chamber consumes approx. 1 kWh/dm3 of evaporated water and, therefore, reaches a price of 180-240 Euros/t Dry Matter (DM), and b) Heavy metals' reduction using adsorbing reaction with magnetite nanostructures can decrease the level of heavy metals in the sewage sludge or digestate up to 20% in one cycle, which can be repeated several times on the same sludge. The aim of the paper is to present a newly developed technology which can provide economic and safe use of moderate heavy metals polluted sewage sludge on agricultural lands as organic fertilizer and, therefore, returning the nutrients (nitrogen, phosphorous, potassium) back to the human food chain, instead of being incinerated or landfilled. The proposed drying technology is economically sustainable due to the low vacuum and temperature (35 °C-40 °C), that increases the efficiency of the heat pump (coefficient of performance 5-7,2) of the energy produced by the anaerobic digestion. Hence, the main emphasis is given to the development of: an efficient method for heavy metals' reduction in the sludge treatment chain by using chitosan covered magnetite nanoparticles, an efficient drying method in a vacuum with low temperature energy which can be exploited from sludge digestion to reduce organic matter, and an energy sustainable concept of sludge treatment, with the addition of fats, oil and grease (FOG) to produce enough biogas for sludge drying to produce fertilizer.


Subject(s)
Fertilizers , Sewage/chemistry , Waste Disposal, Fluid/methods , Agriculture , Biofuels , Chitosan , Desiccation , Fertilizers/economics , Incineration , Magnetite Nanoparticles , Metals, Heavy/analysis , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Nitrogen/analysis , Phosphorus , Potassium , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...