Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Steroid Biochem Mol Biol ; 242: 106545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762058

ABSTRACT

Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor ß, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Steroids/chemistry , Steroids/pharmacology , Semicarbazones/pharmacology , Semicarbazones/chemistry , Semicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Drug Screening Assays, Antitumor
2.
J Steroid Biochem Mol Biol ; 233: 106362, 2023 10.
Article in English | MEDLINE | ID: mdl-37451557

ABSTRACT

Cancer remains a major health concern worldwide. The most frequently diagnosed types of cancer are caused by abnormal production or action of steroid hormones. In the present study, the synthesis and structural characterization of new heterocyclic androstane derivatives with D-homo lactone, 17α-(pyridine-2''-ylmethyl) or 17(E)-(pyridine-2''-ylmethylidene) moiety are presented. All compounds were evaluated for their anti-proliferative activity against HeLa cervical cancer cell line and non-cancerous kidney MDCK cells, where A-homo lactam compound 9A showed the greatest selectivity. Based on in vitro binding assays, N-formyl lactam compound 18 appeared to be the strong and isoform-selective ligand for ERα, while compound 9A displayed binding affinity for the GR-LBD, but also inhibited aldo-keto reductase 1C4 enzyme. Out of four selected compounds, methylpyrazolo derivative 13 showed potential for aromatase binding, while in silico studies provided insight into experimentally confirmed protein-ligand interactions.


Subject(s)
Androstanes , Antineoplastic Agents , Humans , Ligands , Androstanes/pharmacology , Androstanes/chemistry , Steroids/metabolism , Lactams/pharmacology , Structure-Activity Relationship , Cell Proliferation , Molecular Structure , Drug Screening Assays, Antitumor , Cell Line, Tumor
3.
Curr Top Med Chem ; 23(9): 791-815, 2023.
Article in English | MEDLINE | ID: mdl-36703585

ABSTRACT

Parasitic diseases affect millions of people and animals, predominantly in the tropics, including visitors to tropical countries and other areas. Efficient and low-cost treatments for infections caused by various parasites are not yet available. Antiparasitic drugs have some drawbacks, such as toxicity and the development of resistance by parasites. This has motivated many researchers to focus on the discovery of safe, effective and affordable antiparasitic drugs, both among drugs already available for other diseases and new compounds synthesized or isolated from natural sources. Furthermore, steroid and triterpenoid compounds attract the attention of pharmacologists, chemists and biochemists owing to their broad application in the treatment of various diseases. Isolation of steroid and triterpenoid compounds from natural sources with antiparasitic efficacy is an attractive choice for scientists. On the other hand, these compounds can be transformed into more potent forms by modifying the basic skeleton. This review presents a collection of isolated and synthesized steroid and triterpenoid compounds from 2018 to 2021 that have been reported to be effective against certain parasitic protozoa and helminths. A total of 258 compounds have been identified with antimalarial, antitrypanosomal, antileishmanial, anti-Toxoplasma, and/or anthelmintic activity. The described investigations of antiparasitic compounds may be helpful for further drug development.


Subject(s)
Anthelmintics , Antineoplastic Agents , Antiprotozoal Agents , Triterpenes , Trypanosoma cruzi , Animals , Antiparasitic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Anthelmintics/pharmacology , Steroids/pharmacology , Antineoplastic Agents/pharmacology , Triterpenes/pharmacology
4.
Steroids ; 189: 109147, 2023 01.
Article in English | MEDLINE | ID: mdl-36410412

ABSTRACT

The major challenge in the fight against cancer is to design new drugs that will be more selective for cancer cells, with fewer side effects. Synthetic steroids such as cyproterone, fulvestrant, exemestane and abiraterone are approved powerful drugs for the treatment of hormone-dependent diseases such as breast and prostate cancers. Therefore, androstane derivatives in 17-substituted, 17a-homo lactone and 16,17-seco series, with potent anticancer activity, were selected for pharmacokinetic and druglike predictions from the absorption, distribution, metabolism and excretion (ADME) models. In silico determination of physico-chemical and ADMET properties was performed using SwissADME and ProTox-II web tools. The possibility of gastrointestinal absorption and brain penetration was analyzed using the BOILED-Egg model, while the in silico evaluation of the similarities between selected steroid derivatives and FDA-approved drugs was carried out using the SwissSimilarity tool. Of all tested, two compounds that showed good in silico ADMET results, in addition to promising cytotoxicity and molecular docking results, could potentially be evaluated in in vivo tests.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Molecular Docking Simulation , Androstanes/pharmacology , Androstanes/chemistry , Steroids/chemistry , Prostatic Neoplasms/drug therapy , Brain , Antineoplastic Agents/chemistry
5.
J Steroid Biochem Mol Biol ; 218: 106061, 2022 04.
Article in English | MEDLINE | ID: mdl-35031429

ABSTRACT

Marine soft corals are known as a good source of biologically active compounds, among which a large number of steroid compounds are identified. Structures and activities of these compounds have been used in drug discovery and development. From 2015 to 2020, 179 new steroid compounds were isolated from soft corals and structurally characterized. In this review, we report the structural classification and bioactivities of these compounds. The largest group of steroids from soft corals are hydroxysteroids, while the most common biological activity is anticancer. Besides, anticancer hydroxysteroids from soft corals exhibit anti-inflammatory and antibacterial activity. Unlike anticancer and antibacterial activity that can be observed in a number of steroid classes, antioxidant activity and antileishmanial effect were observed only in 19-oxygenated steroids, antiviral activity in pregnane-type steroids and spirosteroids, immunosuppressive activity in epoxy- and epidioxysteroids, and antibacterial activity in two steroid classes, hydroxysteroids and ketosteroids. This systematically analyzed link between the structure and activity of natural marine steroids is a good starting point for future drug design.


Subject(s)
Anthozoa , Animals , Anthozoa/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Hydroxysteroids , Steroids/chemistry , Steroids/pharmacology
6.
RSC Adv ; 11(59): 37449-37461, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-35496404

ABSTRACT

Steroid anticancer drugs are the focus of numerous scientific research efforts. Due to their high cytotoxic effects against tumor cells, some natural or synthetic steroid compounds seem to be promising for the treatment of different classes of cancer. In the present study, fourteen novel O-alkylated oxyimino androst-4-ene derivatives were synthesized from isomerically pure 3E-oximes, using different alkylaminoethyl chlorides. Their in vitro cytotoxic activity was evaluated against eight human cancer cell lines, as well as against normal fetal lung (MRC-5) and human foreskin (BJ) fibroblasts, to test the efficiency and selectivity of the compounds. Most derivatives displayed strong activity against malignant melanoma (G-361), lung adenocarcinoma (A549) and colon adenocarcinoma (HT-29) cell lines. Angiogenesis was assessed in vitro using migration scratch and tube formation assays on HUVEC cells, where partial inhibition of endothelial cell migration was observed for the 17α-(pyridin-2-yl)methyl 2-(morpholin-4-yl)ethyl derivative. Among the compounds that most impaired the growth of lung cancer A549 cells, the (17E)-(pyridin-2-yl)methylidene derivative bearing a 2-(pyrrolidin-1-yl)ethyl substituent induced significant apoptosis in these cells. In combination with low cytotoxicity toward normal MRC-5 cells, this molecule stands out as a good candidate for further anticancer studies. In addition, in vitro investigations against cytochrome P450 enzymes revealed that certain compounds can bind selectively in the active sites of human steroid hydroxylases CYP7, CYP17A1, CYP19A1 or CYP21A2, which could be important for the development of novel activity modulators of these enzymes and identification of possible side effects.

7.
J Mol Graph Model ; 87: 240-249, 2019 03.
Article in English | MEDLINE | ID: mdl-30594032

ABSTRACT

The present study is aimed to analyze lipophilicity and ADMET profiles, and to develop field based 3D-QSAR and ligand-based pharmacophore hypothesis for a series of 17α-picolyl and 17(E)-picolinylidene androstane derivatives in order to give detailed structural insights and to highlight important binding features of novel androstane derivatives, as compounds with antiproliferative activity toward breast adenocarcinoma cells. This study can provide guidelines for the rational design of novel potent compounds. Sum of ranking differences (SRD), as a non-parametric method, was applied for compounds ranking. 3D-QSAR methods, including comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), were applied to predict the antiproliferative effect on breast adenocarcinoma cells and provide the regions in space where interactive fields may influence the activity. The compounds are ranked so the compounds with the most favorable ADME and lipophilicity features together with significant anticancer activity can be distinguished. The established 3D-QSAR model could be used for design of new compounds with antiproliferative activity on the human ER- breast adenocarcinoma cells. The pharmacophore model is able to accurately predict antiproliferative activity. Generally, the present study provides significant guidelines for further selection, synthesis and rational design of new highly potential androstane derivatives as anticancer drugs.


Subject(s)
Antineoplastic Agents, Hormonal/chemistry , Antineoplastic Agents, Hormonal/pharmacology , Quantitative Structure-Activity Relationship , Steroids/chemistry , Steroids/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Models, Molecular , Structure-Activity Relationship
8.
Medchemcomm ; 9(6): 969-981, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-30108986

ABSTRACT

New A-ring pyridine fused androstanes in 17a-homo-17-oxa (d-homo lactone), 17α-picolyl or 17(E)-picolinylidene series were synthesized and validated by X-ray crystallography, HRMS, IR and NMR spectroscopy. Novel compounds 3, 5, 8 and 12 were prepared by treatment of 4-en-3-one or 4-ene-3,6-dione d-modified androstane derivatives with propargylamine catalyzed by Cu(ii), and evaluated for potential anticancer activity in vitro using human cancer cell lines and recombinant targets of steroidal anti-cancer drugs. Pyridine fusion to position 3,4 of the A-ring may dramatically enhance affinity of 17α-picolyl compounds for CYP17 while conferring selective antiproliferative activity against PC-3 cells. Similarly, pyridine fusion to the A-ring of steroidal d-homo lactones led to identification of new inhibitors of aldo-keto reductase 1C3, an enzyme targeted in acute myeloid leukemia, breast and prostate cancers. One A-pyridine d-lactone steroid 5 also has selective submicromolar antiproliferative activity against HT-29 colon cancer cells. None of the new derivatives have affinity for estrogen or androgen receptors in a yeast screen, suggesting negligible estrogenicity and androgenicity. Combined, our results suggest that A-ring pyridine fusions have potential in modulating the anticancer activity of steroidal compounds.

9.
Mater Sci Eng C Mater Biol Appl ; 89: 371-377, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29752109

ABSTRACT

An androstane (17ß-hydroxy-17α-picolyl-androst-5-en-3ß-yl-acetate (derivative A)) cancer inhibitor was successfully captured in a carrier made of nano-sized hydroxyapatite (HAp) coated with chitosan-PLGA polymer blends (Ch-PLGA). In our previous studies, we demonstrated that it was convenient to use spherical HAp/Ch-PLGA carriers as vehicles to target the lungs following intravenous administration. In this study, we used emulsification and subsequent freeze-drying to load the spherical HAp/Ch-PLGA carriers with varying contents of the derivative A, in order to examine the selective toxicity towards cancerous/healthy lung cells. The XRD and FT-IR techniques confirmed the drug loading process, and the content of the poorly water soluble derivative A was estimated directly via the DSC technique. The particles were spherical in shape with the d50 distribution varying between 167 and 231 nm, whereas the content of the derivative A ranged from 6.5 to 19.3 wt%. Cell-selective cytotoxicity was examined simultaneously on two cell lines: human lung carcinoma (A549 ATCC CCL 185) and human lung fibroblasts (MRC-5 ATCC CCL 171). All particles exhibited nearly three times larger cytotoxicity towards cancer cells (A549) than towards healthy cells (MRC5), where the particles with the derivative A content of 6.5 wt% allowed for the viability of healthy cells >80%. Ninety-six hours after the treatment of cells with particles with different contents of derivative A (after incubation and recovery), recovery was faster in damaged healthy cells than in cancerous cells.


Subject(s)
Androstanes/chemistry , Chitosan/chemistry , Durapatite/chemistry , Lactic Acid/chemistry , Nanocomposites/chemistry , Polyglycolic Acid/chemistry , A549 Cells , Androstanes/metabolism , Androstanes/pharmacology , Calorimetry, Differential Scanning , Cell Line , Cell Survival/drug effects , Drug Carriers/chemistry , Drug Liberation , Humans , Lung Neoplasms/pathology , Microscopy, Atomic Force , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Spectroscopy, Fourier Transform Infrared
10.
Colloids Surf B Biointerfaces ; 148: 629-639, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27694053

ABSTRACT

In an earlier study we demonstrated that hydroxyapatite nanoparticles coated with chitosan-poly(d,l)-lactide-co-glycolide (HAp/Ch-PLGA) target lungs following their intravenous injection into mice. In this study we utilize an emulsification process and freeze drying to load the composite HAp/Ch-PLGA particles with 17ß-hydroxy-17α-picolyl-androst-5-en-3ß-yl-acetate (A), a chemotherapeutic derivative of androstane and a novel compound with a selective anticancer activity against lung cancer cells. 1H NMR and 13C NMR techniques confirmed the intact structure of the derivative A following its entrapment within HAp/Ch-PLGA particles. The thermogravimetric and differential thermal analyses coupled with mass spectrometry were used to assess the thermal degradation products and properties of A-loaded HAp/Ch-PLGA. The loading efficiency, as indicated by the comparison of enthalpies of phase transitions in pure A and A-loaded HAp/Ch-PLGA, equaled 7.47wt.%. The release of A from HAp/Ch-PLGA was sustained, neither exhibiting a burst release nor plateauing after three weeks. Atomic force microscopy and particle size distribution analyses were used to confirm that the particles were spherical with a uniform size distribution of d50=168nm. In vitro cytotoxicity testing of A-loaded HAp/Ch-PLGA using MTT and trypan blue dye exclusion assays demonstrated that the particles were cytotoxic to the A549 human lung carcinoma cell line (46±2%), while simultaneously preserving high viability (83±3%) of regular MRC5 human lung fibroblasts and causing no harm to primary mouse lung fibroblasts. In conclusion, composite A-loaded HAp/Ch-PLGA particles could be seen as promising drug delivery platforms for selective cancer therapies, targeting malignant cells for destruction, while having a significantly lesser cytotoxic effect on the healthy cells.


Subject(s)
Androstanes/chemistry , Antineoplastic Agents/chemistry , Chitosan/chemistry , Durapatite/chemistry , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , A549 Cells , Androstanes/pharmacokinetics , Androstanes/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line , Cell Survival/drug effects , Cells, Cultured , Drug Liberation , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice, Inbred C57BL , Microscopy, Atomic Force , Microscopy, Confocal , Nanoparticles/chemistry , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
11.
Eur J Pharm Sci ; 93: 1-10, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27418311

ABSTRACT

The selection of the most promising anticancer compounds from the pool of the huge number of synthesized molecules is a quite complex task. There are many compounds characterization approaches which can suggest the best structural features of a molecule with the highest antiproliferative effect on the certain type of cancer cell lines. One of these approaches is the lipophilicity determination of compounds and the analysis of its correlation with the anticancer activity. Since the importance of the lipophilicity is underlined in many earlier studies, this study is focused on determination of lipophilicity of previously synthesized 17α-picolyl and 17(E)-picolinylidene androstane derivatives by using reversed-phase high performance liquid chromatography (RP-HPLC) as a very fast, effective and relatively cheap method. Determination of the chromatographic lipophilicity of the studied androstanes can be considered as the part of their physicochemical characterization, which is a very important step in their further selection as drug candidates. The present study does not neglect the in silico approach. The determined chromatographic lipophilicity was analyzed by quantitative structure-retention relationship (QSRR) approach in order to reveal which molecular characteristics contribute mostly to the typical behavior of the androstanes in the applied chromatographic system, and thus to their lipophilicity. Classical statistical approach and Sum of Ranking Differences method were used for selection of the best QSRR models which should be used in prediction of chromatographic lipophilicity of studied androstane derivatives.


Subject(s)
Androstanes/chemistry , Antineoplastic Agents/chemistry , Models, Chemical , Chromatography, Reverse-Phase , Quantitative Structure-Activity Relationship
12.
Bioorg Med Chem ; 23(22): 7189-98, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26494582

ABSTRACT

Biological investigation was conducted to study in vitro antiproliferative and pro-apoptotic potential of selected 17α-picolyl and 17(E)-picolinylidene androstane derivatives. The antiproliferative impact was examined on six human tumor cell lines, including two types of breast (MCF-7 and MDA-MB-231), prostate (PC3), cervical (HeLa), colon (HT 29) and lung cancer (A549), as well as one normal fetal lung fibroblasts cell line (MRC-5). All derivatives selectively decreased proliferation of estrogen receptor negative MDA-MB-231 breast cancer cells after 48 h and 72 h treatment and compounds showed time-dependent activity. We used this cell line to investigate cell cycle modulation and apoptotic cell death induction by flow cytometry, expression of apoptotic proteins by Western blot and apoptotic morphology by visual observation. Tested androstane derivatives affected the cell cycle distribution and induced apoptosis and necrosis. Compounds had different and specific mode of action, depending on derivative type and exposure time. Some compounds induced significant apoptosis measured by Annexin V test compared to reference compound formestane. Higher expression of pro-apoptotic BAX, downregulation of anti-apoptotic Bcl-2 and cleavage of PARP protein were confirmed in almost all treated samples, but the lack of caspase-3 activation suggested the induction of apoptosis in caspase-independent manner. More cells with apoptotic morphology were observed in samples after prolonged treatment. Structure-activity relationship analysis was performed to find correlations between the structure variations of investigated derivatives and observed biological effects. Results of this study showed that some of the investigated androstane derivatives have good biomedical potential and could be candidates for anticancer drug development.


Subject(s)
Androstanes/chemistry , Androstanes/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Female , HT29 Cells , HeLa Cells , Humans , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , bcl-2-Associated X Protein/metabolism
13.
Bioorg Med Chem ; 23(7): 1557-68, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25737400

ABSTRACT

The heterocyclic ring at C-17 position of the androstane compounds plays an important role in biological activity. The aim of the present study was to synthesize and evaluate potential antitumor activity of different A-modified 17α-picolyl and 17(E)-picolinylidene androstane derivatives. In several synthetic steps, novel derivatives bearing the hydroximino, nitrile or lactame functions in A-ring were synthesized and characterized according to the spectral data, by mass analysis as well as XRD analysis (compounds 6, 13 and 15). The structurally most promising compounds 6, 11-17 were investigated as antitumor agents. The in vitro antiproliferative activity was evaluated against six human cancer cell lines: estrogen receptor negative (ER-) breast adenocarcinoma (MDA-MB-231); estrogen receptor positive (ER+) breast adenocarcinoma (MCF-7); prostate cancer (PC-3); human cervical carcinoma (HeLa); lung adenocarcinoma (A549) and colon adenocarcinoma (HT-29) using MTT assay. The results of the 48h incubation time in vitro tests showed that compound 15 was the most effective against PC-3 (IC50 6.6µM), compound 17 against MCF-7 (IC50 7.9µM) cells, while compound 16 exhibited strong antiproliferative effect against both, MCF-7 (IC50 1.7µM) and PC-3 (IC50 8.7µM) cancer cells. It was also found that compounds 16 and 17 induced apoptosis in MCF-7 cells (dicyano derivative 17 stronger then dioxime 16 and reference formestane), with no distinct changes in the cell cycle of MCF-7 cells.


Subject(s)
Androstanes/chemical synthesis , Antineoplastic Agents/chemical synthesis , Androstanes/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Female , HT29 Cells , HeLa Cells , Humans , MCF-7 Cells , Structure-Activity Relationship , X-Ray Diffraction
14.
Acta Biol Hung ; 66(1): 41-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25740437

ABSTRACT

17α-hydroxylase-C17,20-lyase (P45017α) is a key regulator enzyme of the steroid hormone biosynthesis in both the adrenals and the testes. Inhibition of this enzyme can block androgen synthesis in an early step, and may thereby be useful in the treatment of several androgen-dependent diseases. We developed radio-substrate in vitro incubation methods for the determination of the distinct 17α-hydroxylase and C17,20-lyase activities of the enzyme using rat testicular homogenate as enzyme source. With this method we have studied the inhibiting activity of selected steroidal picolyl and picolinylidene compounds. Tests revealed a substantial inhibitory action of the 17-picolinyliden-androst-4-en-3-one compound.


Subject(s)
Steroid 17-alpha-Hydroxylase/metabolism , Steroids/pharmacology , Animals , Male , Rats , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Testis/drug effects , Testis/enzymology
15.
Steroids ; 94: 31-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25541058

ABSTRACT

A convenient microwave assisted solvent free synthesis as well as conventional synthesis of salicyloyloxy and 2-methoxybenzoyloxy androstane and stigmastane derivatives 7-19 from appropriate steroidal precursors 1-6 and methyl salicylate is reported. The microwave assisted synthesis in most cases was more successful regarding reaction time and product yields. It was more environmentally friendly too, compared to the conventional method. The antioxidant activity and cytotoxicity of the synthesized derivatives were evaluated in a series of in vitro tests, as well as their inhibition potency exerted on hydroxysteroid dehydrogenase enzymes (Δ(5)-3ßHSD, 17ßHSD2 and 17ßHSD3). All of the tested compounds were effective in OH radical neutralization, particularly compounds 9, 11 and 14, which exhibited about 100-fold stronger activity than commercial antioxidants BHT and BHA. In DPPH radical scavenging new compounds were effective, but less than reference compounds. 2-Methoxybenzoyl ester 10 exhibited strong cytotoxicity against MDA-MB-231 cells. Most compounds inhibited growth of PC-3 cells, where salicyloyloxy stigmastane derivative 15 showed the best inhibition potency. Compounds 9, 10 and 11 were the best inhibitors of 17ßHSD2 enzyme. X-ray structure analysis and molecular mechanics calculations (MMC) were performed for the best cytotoxic agents, compounds 10 and 15. A comparison of crystal and MMC structures of compounds 10 and 15 revealed that their molecules conformations are stable even after releasing of the influence of crystalline field and that the influence of crystal packing on molecular conformation is not predominant.


Subject(s)
Androstanes/chemical synthesis , Free Radical Scavengers/chemical synthesis , Hydroxybenzoate Ethers/chemical synthesis , Salicylates/chemical synthesis , Androstanes/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Free Radical Scavengers/pharmacology , Humans , Hydroxybenzoate Ethers/pharmacology , Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Inhibitory Concentration 50 , Microwaves , Molecular Conformation , Salicylates/pharmacology
16.
Eur J Pharm Sci ; 62: 258-66, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24929053

ABSTRACT

The present paper deals with prediction of cytotoxic activity of 17-picolyl and 17-picolinylidene androstane derivatives toward androgen receptor negative prostate cancer cell line (PC-3). The prediction was achieved applying artificial neural networks (ANNs) method on the basis of molecular descriptors. The most important descriptors (skin permeability (SP), Madin-Darby canine kidney cell permeability (MDCK) and universal salt solubility factor (S+SF)) were selected by using stepwise selection coupled with partial least squares method. The ANN modelling was carried out in order to obtain reliable models which can facilitate further synthesis of androstane derivatives with high antiproliferative activity toward PC-3 cell line. The modelling procedure resulted in three ANN models with the best statistical performance. The obtained results show that the established ANN models can be applied for required purpose.


Subject(s)
Androstanes/pharmacology , Antineoplastic Agents/pharmacology , Models, Biological , Neural Networks, Computer , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dogs , Humans , Madin Darby Canine Kidney Cells , Models, Molecular , Reproducibility of Results
17.
Bioorg Med Chem ; 21(23): 7257-66, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24148837

ABSTRACT

We report a rapid and efficient synthesis of A-ring modified 17α-picolyl and 17(E)-picolinylidene androstane derivatives from dehydroepiandrosterone. Compounds were validated spectroscopically and structurally characterized by X-ray crystallography. Virtual screening by molecular docking against clinical targets of steroidal anticancer drugs (ERα, AR, Aromatase and CYP17A1) suggests that 17(E)-picolinylidene, but not 17α-picolyl androstanes could specifically interact with CYP17A1 (17α-hydroxylase) with similar geometry and affinity as Abiraterone, a 17-pyridinyl androstane drug clinically used in the treatment of prostate cancer. In addition, several 17(E)-picolinylidene androstanes demonstrated selective antiproliferative activity against PC3 prostate cancer cells, which correlates with Abiraterone antiproliferative activity and predicted CYP17A1 binding affinities. Based on these preliminary results, 17(E)-picolinylidene androstane derivatives could be a promising starting point for the development of new compounds for the treatment of prostate cancer.


Subject(s)
Androstanes/chemistry , Androstanes/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Prostatic Neoplasms/drug therapy , Cell Line, Tumor , Crystallography, X-Ray , Humans , Male , Molecular Docking Simulation , Prostate/drug effects , Prostate/enzymology , Prostate/pathology , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Protein Binding , Steroid 17-alpha-Hydroxylase/chemistry , Steroid 17-alpha-Hydroxylase/metabolism
18.
Eur J Med Chem ; 54: 784-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22770744

ABSTRACT

New 17-picolyl and 17-picolinylidene androstane derivatives, 3-10, 15, 18, 19, 22 and 23, were synthesized starting from 17α-picolyl-androst-5-en-3ß,17ß-diol (1) and 17(Z)-picolinylidene-androst-5-en-3ß-ol (2). Reaction of 1 with m-chloroperoxybenzoic acid gives 5α,6α-epoxy N-oxide derivative 3, or, with Jones reagent, 3,6-dione derivative 4; while 17α-picolyl-androst-5-en-3ß,4α,17ß-triol (5) or 3ß,4ß,17ß-triol (6) derivatives are obtainable from 1 using SeO(2) in dioxane. Base-catalyzed tosyl group elimination from 7 or 9 affords AB conjugated derivatives 8 and 10. Oppenauer oxidation of 1 and 2 yields 4-en-3-one derivatives 11 and 12, which, with H(2)O(2) in 4 M NaOH, affords 4α,5α and 4ß,5ß-epoxides 13, 14, 16 and 17. New 4-methoxy-3-keto derivatives 15 and 18 were obtained from 13 and 14, or, with methanol in 4 M NaOH, from 16 and 17. Reduction of 11 with NaBH(4) gives 22, which was then acetylated to obtain 23. All new derivatives were screened for antitumor activity against human breast adenocarcinoma ER+, MCF-7; human breast adenocarcinoma ER-, MDA-MB-231; prostate cancer AR-, PC-3; human cervix carcinoma, HeLa; and colon cancer, HT-29 cells; as well as one human non-tumor cell line, MRC-5. Compounds 3, 5, 6, 8, 10, 18, 19 and 22 exhibited significant antitumor activity against MDA-MB-231 breast cancer cells; while 5, 6 and 10 also showed strong cytotoxicity against HT-29. Only compound 19 exhibited significant activity against MCF-7 breast cancer cells. No compounds displayed cytotoxicity against non-tumor MRC-5 cells.


Subject(s)
Androstanes/chemical synthesis , Androstanes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Androstanes/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chemistry Techniques, Synthetic , Humans , Inhibitory Concentration 50
SELECTION OF CITATIONS
SEARCH DETAIL
...