Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 11: 1370951, 2024.
Article in English | MEDLINE | ID: mdl-38765810

ABSTRACT

The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.

2.
Pharmaceuticals (Basel) ; 17(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794167

ABSTRACT

Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.

3.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36297381

ABSTRACT

Diabetes is one of the most frequently occurring metabolic disorders, affecting almost one tenth of the global population. Despite advances in antihyperglycemic therapeutics, the management of diabetes is limited due to its complexity and associated comorbidities, including diabetic neuropathy, diabetic nephropathy and diabetic retinopathy. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are involved in the regulation of gene expression as well as various disease pathways in humans. Several ncRNAs are dysregulated in diabetes and are responsible for modulating the expression of various genes that contribute to the 'symptom complex' in diabetes. We review various miRNAs and lncRNAs implicated in diabetes and delineate ncRNA biological networks as well as key ncRNA targets in diabetes. Further, we discuss the spatial regulation of ncRNAs and their role(s) as prognostic markers in diabetes. We also shed light on the molecular mechanisms of signal transduction with diabetes-associated ncRNAs and ncRNA-mediated epigenetic events. Lastly, we summarize clinical trials on diabetes-associated ncRNAs and discuss the functional relevance of the dysregulated ncRNA interactome in diabetes. This knowledge will facilitate the identification of putative biomarkers for the therapeutic management of diabetes and its comorbidities. Taken together, the elucidation of the architecture of signature ncRNA regulatory networks in diabetes may enable the identification of novel biomarkers in the discovery pipeline for diabetes, which may lead to better management of this metabolic disorder.

4.
Front Pharmacol ; 13: 896920, 2022.
Article in English | MEDLINE | ID: mdl-35774605

ABSTRACT

Vitamin K2-7, also known as menaquinone-7 (MK-7) is a form of vitamin K that has health-beneficial effects in osteoporosis, cardiovascular disease, inflammation, cancer, Alzheimer's disease, diabetes and peripheral neuropathy. Compared to vitamin K1 (phylloquinone), K2-7 is absorbed more readily and is more bioavailable. Clinical studies have unequivocally demonstrated the utility of vitamin K2-7 supplementation in ameliorating peripheral neuropathy, reducing bone fracture risk and improving cardiovascular health. We examine how undercarboxylated osteocalcin (ucOC) and matrix Gla protein (ucMGP) are converted to carboxylated forms (cOC and cMGP respectively) by K2-7 acting as a cofactor, thus facilitating the deposition of calcium in bones and preventing vascular calcification. K2-7 is beneficial in managing bone loss because it upregulates osteoprotegerin which is a decoy receptor for RANK ligand (RANKL) thus inhibiting bone resorption. We also review the evidence for the health-beneficial outcomes of K2-7 in diabetes, peripheral neuropathy and Alzheimer's disease. In addition, we discuss the K2-7-mediated suppression of growth in cancer cells via cell-cycle arrest, autophagy and apoptosis. The mechanistic basis for the disease-modulating effects of K2-7 is mediated through various signal transduction pathways such as PI3K/AKT, MAP Kinase, JAK/STAT, NF-κB, etc. Interestingly, K2-7 is also responsible for suppression of proinflammatory mediators such as IL-1α, IL-1ß and TNF-α. We elucidate various genes modulated by K2-7 as well as the clinical pharmacometrics of vitamin K2-7 including K2-7-mediated pharmacokinetics/pharmacodynamics (PK/PD). Further, we discuss the current status of clinical trials on K2-7 that shed light on dosing strategies for maximum health benefits. Taken together, this is a synthetic review that delineates the health-beneficial effects of K2-7 in a clinical setting, highlights the molecular basis for these effects, elucidates the clinical pharmacokinetics of K2-7, and underscores the need for K2-7 supplementation in the global diet.

5.
Front Pharmacol ; 12: 778014, 2021.
Article in English | MEDLINE | ID: mdl-35280258

ABSTRACT

Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFß and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.

SELECTION OF CITATIONS
SEARCH DETAIL
...