Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Chemother ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580055

ABSTRACT

INTRODUCTION: Campylobacteriosis stands as one of the most frequent bacterial gastroenteritis worldwide necessitating antibiotic treatment in severe cases and the rise of quinolones-resistant Campylobacter jejuni poses a significant challenge. The predominant mechanism of quinolones-resistance in this bacterium involves point mutations in the gyrA, resulting in amino acid substitution from threonine to isoleucine at 86th position, representing more than 90% of mutant DNA gyrase, and aspartic acid to asparagine at 90th position. WQ-3334, a novel quinolone, has demonstrated strong inhibitory activity against various bacteria. This study aims to investigate the effectiveness of WQ-3334, and its analogues, WQ-4064 and WQ-4065, with a unique modification in R1 against quinolones-resistant C. jejuni. METHODS: The structure-activity relationship of the examined drugs was investigated by measuring IC50 and their antimicrobial activities were accessed by MIC against C. jejuni strains. Additionally, in silico docking simulations were carried out using the crystal structure of the Escherichia coli DNA gyrase. RESULT: WQ-3334 exhibited the lowest IC50 against WT (0.188 ± 0.039 mg/L), T86I (11.0 ± 0.7 mg/L) and D90 N (1.60 ± 0.28 mg/L). Notably, DNA gyrases with T86I substitutions displayed the highest IC50 values among the examined WQ compounds. Moreover, WQ-3334 demonstrated the lowest MICs against wild-type and mutant strains. The docking simulations further confirmed the interactions between WQ-3334 and DNA gyrases. CONCLUSION: WQ-3334 with 6-amino-3,5-difluoropyridine-2-yl at R1 severed as a remarkable candidate for the treatment of foodborne diseases caused by quinolones-resistant C. jejuni as shown by the high inhibitory activity against both wild-type and the predominant quinolones-resistant strains.

2.
Cardiovasc Res ; 118(17): 3360-3373, 2023 01 18.
Article in English | MEDLINE | ID: mdl-35258628

ABSTRACT

AIMS: Cardiotoxicity by doxorubicin predicts worse prognosis of patients. Accumulation of damaged DNA has been implicated in doxorubicin-induced cardiotoxicity. SIRT1, an NAD+-dependent histone/protein deacetylase, protects cells by deacetylating target proteins. We investigated whether SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating Ser139 phosphorylation of histone H2AX, a critical signal of the DNA damage response. METHODS AND RESULTS: Doxorubicin (5 mg/kg per week, x4) was administered to mice with intact SIRT1 (Sirt1f/f) and mice that lack SIRT1 activity in cardiomyocytes (Sirt1f/f;MHCcre/+). Reductions in left ventricular fractional shortening and ejection fraction by doxorubicin treatment were more severe in Sirt1f/f;MHCcre/+ than in Sirt1f/f. Myocardial expression level of type-B natriuretic peptide was 2.5-fold higher in Sirt1f/f;MHCcre/+ than in Sirt1f/f after doxorubicin treatment. Sirt1f/f;MHCcre/+ showed larger fibrotic areas and higher nitrotyrosine levels in the heart after doxorubicin treatment. Although doxorubicin-induced DNA damage evaluated by TUNEL staining was enhanced in Sirt1f/f;MHCcre/+, the myocardium from Sirt1f/f;MHCcre/+ showed blunted Ser139 phosphorylation of H2AX by doxorubicin treatment. In H9c2 cardiomyocytes, SIRT1 knockdown attenuated Ser139 phosphorylation of H2AX, increased DNA damage, and enhanced caspase-3 activation under doxorubicin treatment. Immunostaining revealed that acetylation level of H2AX at Lys5 was higher in hearts from Sirt1f/f;MHCcre/+. In H9c2 cells, acetyl-Lys5-H2AX level was increased by SIRT1 knockdown and reduced by SIRT1 overexpression. Ser139 phosphorylation in response to doxorubicin treatment was blunted in a mutant H2AX with substitution of Lys5 to Gln (K5Q) that mimics acetylated lysine compared with that in wild-type H2AX. Expression of K5Q-H2AX as well as S139A-H2AX, which cannot be phosphorylated at Ser139, augmented doxorubicin-induced caspase-3 activation. Treatment of mice with resveratrol, a SIRT1 activator, attenuated doxorubicin-induced cardiac dysfunction, which was associated with a reduction in acetyl-Lys5-H2AX level and a preserved phospho-Ser139-H2AX level. CONCLUSION: These findings suggest that SIRT1 counteracts doxorubicin-induced cardiotoxicity by mediating H2AX phosphorylation through its deacetylation in cardiomyocytes.


Subject(s)
Histones , Myocytes, Cardiac , Mice , Animals , Histones/metabolism , Myocytes, Cardiac/metabolism , Cardiotoxicity/metabolism , Caspase 3/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Doxorubicin/toxicity , Apoptosis
3.
Microb Drug Resist ; 27(10): 1412-1419, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33835868

ABSTRACT

Aims: WQ-3810 has strong inhibitory activity against Salmonella and other fluoroquinolone-resistant pathogens. The unique potentiality of this is attributed to 6-amino-3,5-difluoropyridine-2-yl at R1 group. The aim of this study was to examine WQ-3810 and its derivatives WQ-3334 and WQ-4065 as the new drug candidate for wild-type Salmonella and that carrying QnrB19. Materials and Methods: The half maximal inhibitory concentrations (IC50s) of WQ-3810, WQ-3334 (Br atom in place of methyl group at R8), and WQ-4065 (6-ethylamino-3,5-difluoropyridine-2-yl in place of 6-amino-3,5-difluoropyridine-2-yl group at R1) in the presence or absence of QnrB19 were assessed by in vitro DNA supercoiling assay utilizing recombinant DNA gyrase and QnrB19. Results: IC50s of WQ-3810, WQ-3334, and WQ-4065 against Salmonella DNA gyrase were 0.031 ± 0.003, 0.068 ± 0.016, and 0.72 ± 0.39 µg/mL, respectively, while QnrB19 increased IC50s of WQ-3810, WQ-3334, and WQ-4065 to 0.44 ± 0.05, 0.92 ± 0.34, and 9.16 ± 2.21 µg/mL, respectively. Conclusion: WQ-3810 and WQ-3334 showed stronger inhibitory activity against Salmonella Typhimurium DNA gyrases than WQ-4065 even in the presence of QnrB19. The results suggest that 6-amino-3,5-difluoropyridine-2-yl group at R1 is playing an important role and WQ-3810 and WQ-3334 to be good candidates for Salmonella carrying QnrB19.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Genes, Bacterial/genetics , Salmonella/genetics , Anti-Bacterial Agents/chemistry , DNA Gyrase/drug effects , Drug Resistance, Bacterial/drug effects , Fluoroquinolones/chemistry , Genes, Bacterial/drug effects , Microbial Sensitivity Tests , Plasmids , Quinolones/pharmacology , Salmonella/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...