Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 11: 574496, 2020.
Article in English | MEDLINE | ID: mdl-33192517

ABSTRACT

Flavonoids such as naringenin, quercetin, and naringin are known to exhibit anticancer properties. In this study, we examined the effects of these flavonoids on cell viability and apoptotic pathways of cancer cells, either singly or in combination with the type 1 ribosome inactivating protein, Balsamin. Treatment with flavonoids (naringenin, quercetin, and naringin) plus Balsamin for 48 h reduced HepG2 and MCF-7 cell viability, increased the activation of caspase-3 and -8, and induced apoptosis through up-regulation of pro-apoptotic genes and down-regulation of anti-apoptotic genes. Out of the three flavonoids tested, the Balsamin-Naringenin and Balsamin-Quercetin combinations appeared to be most effective compared to the Balsamin-Naringin combination. Balsamin combined with flavonoids also activated endoplasmic reticulum (ER)-stress-mediated apoptosis in breast cancer (MCF-7) cells, which was not activated by Balsamin treatment alone. These experimental results showed that Balsamin combined with flavonoids can reduce HepG2 and MCF-7 cells viability and induce apoptosis, which could be considered as a promising therapeutic approach to sensitize cells to Balsamin treatment, thereby improving its efficacy in breast or liver cancer therapy.

2.
Int J Biol Macromol ; 114: 226-234, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29471092

ABSTRACT

Balsamin, a type I ribosome-inactivating protein (RIP), has been shown to inhibit HIV-1 replication at the translation step. Our recent studies have shown that balsamin also possess anti-tumor, antibacterial and DNase-like activity, however, the amount of natural balsamin in Momordica balsamina seeds is limited and preclinical studies require large quantities of pure, bioactive balsamin. Therefore, in this study, we cloned the balsamin gene, expressed it in E.coli BL21 (DE3) strain and purified it by nickel affinity chromatography. Functional analysis indicated that balsamin exhibits both RNA N-glycosidase activity, releasing the Endo-fragment from rabbit reticulocyte rRNA, and DNase-like activity, converting the supercoiled form of a plasmid into the linear form in a concentration-dependent manner. Analysis of secondary structure revealed that recombinant balsamin mainly consisted of α-helical and random coiled with minimal turns and ß-sheets. Recombinant balsamin was found to be stable in the temperature range of 20-60 °C and pH range of 6-9. Antimicrobial assays showed that the minimum inhibitory concentrations of recombinant balsamin for various pathogens ranged between 1.56 and 12.5 µg/ml. Heterologous expression and purification of balsamin carries great importance as it provides an alternative approach for large-scale preparation of biologically active recombinant balsamin, which is difficult from its natural source.


Subject(s)
Momordica , Plant Proteins , RNA, Ribosomal/chemistry , Ribosome Inactivating Proteins , Animals , Momordica/chemistry , Momordica/genetics , Plant Proteins/biosynthesis , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Structure, Secondary , Rabbits , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Ribosome Inactivating Proteins/biosynthesis , Ribosome Inactivating Proteins/chemistry , Ribosome Inactivating Proteins/genetics
3.
Mol Cell Biochem ; 432(1-2): 189-198, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28378131

ABSTRACT

Breast cancer is the second most common cancer causing death worldwide with metastasis and disease relapse being the major drawbacks in current treatments. Therefore, development of novel drugs is needed. Balsamin, a 28 kDa Type I ribosome-inactivating protein, is rich in the seeds of Momordica balsamina. In this study, the molecular mechanism and the possible effects of balsamin on the two key hallmarks of cancer were investigated. Firstly, the induction of apoptosis in human breast cancer MCF-7 and BT549 cells showed that balsamin-induced apoptosis involved increases in caspase-3 and caspase-8 activity, upregulation of Bax, Bid, and Bad, and downregulation of BCL-2 and BCL-XL. Furthermore, balsamin inhibited the proliferation of breast cancer cells in a dose-dependent manner with IC50 values of 24.53 and 32.79 µg/ml for MCF-7 and BT549 cells, respectively. Moreover, flow cytometric analysis revealed that balsamin induced S-/G-phase cell cycle arrest. Our studies show that balsamin has anti-tumor activity and could be used as a neutraceutical for the treatment of breast cancer.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , DNA Fragmentation/drug effects , Plant Proteins/pharmacology , Ribosome Inactivating Proteins/pharmacology , S Phase Cell Cycle Checkpoints/drug effects , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...