Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 11(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071588

ABSTRACT

Epidermal growth factor (EGF) plays an important role in nutrients absorption. However, whether it can be an effective additive to improve the growth performance and nutrients absorption in lipopolysaccharide (LPS) challenged early weaning piglets is still unknown. A 14-days trial was conducted to investigate how EGF attenuates the effect of LPS on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs, and study the underlying mechanism. A total of 48 early weaned piglets, aged 25 days, were randomly distributed to four groups (control, EGF, LPS and EGF + LPS groups) consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 µg/kg body weight; ZLPS = low LPS: 0 µg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that piglets injected with HLPS level significantly decreased the average daily gain (ADG), and significantly increased the feed conversion ratio (FCR) compared with the piglets injected with ZLPS level, while piglets fed HEGF level significantly increased the average daily feed intake (ADFI) compared with the piglets fed ZEGF level (p < 0.05). Piglets injected with HLPS level significantly decreased the apparent digestibility of crude fat compared with the piglets injected with ZLPS level (p < 0.05). Piglets injected with HLPS level significantly increased the concentration of most microelements in the gastrointestinal tract chyme and feces, and significantly decreased the expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets injected with ZLPS level (p < 0.05). Piglets fed HEGF level significantly decreased the concentration of microelement in the gastrointestinal tract chyme and feces, and significantly increased the expression levels of the microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets fed ZEGF level (p < 0.05). In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption of early-weaning piglets. EGF and LPS influenced the absorption of essential trace element through changing the expression levels of microelement transport-relative genes in the mucosa of gastrointestinal tissues. In the early weaning piglets, EGF can be used as an additive to increase the essential trace elements absorption.

2.
Poult Sci ; 100(3): 100802, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33518308

ABSTRACT

With the increase of consumer demand for high-quality animal protein, it becomes imperative to improve meat quality through nutritional strategy. Resveratrol is a plant polyphenol that exists in grapes and grape products, and it has been considered as a potential functional feed additive. Here, we aimed to explore the optimal dose of resveratrol in Pekin ducks' diet and its effect on improving meat quality. A total of 432 male Pekin ducks (1-day-old) were selected and randomly allotted to 4 treatment groups, with each group containing 6 replicates. Four different levels of resveratrol were evaluated (0, 150, 300, and 450 mg/kg) for 42 d. The carcass traits, meat quality, and muscle fiber characteristics of Pekin ducks were investigated. Results showed that a∗24h, b∗24h, intramuscular fat, crude protein, total flavor amino acid content of duck breast muscle, and a∗45min of duck leg muscle were increased (P < 0.05) by resveratrol. Resveratrol also reduced abdominal fat deposition, shear force, L∗45min of breast muscle and drip loss, shear force, and L∗45min of leg muscle. In addition, the breast muscle fibers of resveratrol-fed ducks had lower diameter and cross-sectional area and higher density (P < 0.05). Overall, we conclude that dietary resveratrol supplement can effectively improve Pekin duck meat quality, the optimal additional range in diet being 300 to 450 mg/kg. Its underlying mechanism might be partly through stimulation of intramuscular fat and flavor amino deposition and alteration of muscle fiber characteristics.


Subject(s)
Dietary Supplements , Ducks , Meat , Resveratrol , Animals , Antioxidants/pharmacology , Diet/veterinary , Male , Meat/standards , Muscles/drug effects , Random Allocation , Resveratrol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...