Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(7): e29014, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38633632

ABSTRACT

The present global environment is facing growing issues linked to production of concrete, mostly due to high consumption of concrete as the dominating construction material globally. In today's climate of environmental sustainability, recycled concrete production using RA (recycled aggregates) requires a more holistic approach. This study examined how recycled aggregate (RA), metakaolin, silica fume and fly ash affect mechanical characteristics (compressive strength, split tensile strength), and durability characteristics (acid resistance, absorption, sorptivity) of concrete. The objective of this investigation is to figure out how the potential of RA based concrete can be improved so that they can be used to their maximum extent. To achieve the desired outcome, the study involved testing three distinct groups of concrete samples, each containing different percentages (25%, 50%, and 75%) of recycled aggregate (RA) with a constant amount of silica fume, (25 kg/m3). The first group was used as the control mix, while the second group incorporated 10% fly ash, and the third group included 15% metakaolin. The findings of this research show that the RA concrete mechanical properties as well as durability can be significantly improved by incorporating 15% metakaolin and 10% fly ash. The investigation involves the examination of all ternary blends within two distinct acidic environments, specifically a 5% hydrochloric acid (HCl) solution and sulfuric acid (H2SO4). Both the ternary mixes (metakaolin and fly ash) with the combination of silica improve all characteristics. The quality assurance, cost analysis and the reduction of CO2 emissions are carried out, utilizing RA (recycled aggregates) as a substitute for NA (natural aggregate). In case of producing superior structural concrete, it is recommended based on results to limit the replacement percentage of recycled aggregate (RA) to a maximum of 50% in presence of 10% fly ash and 15% metakaolin, otherwise the RA replacement percentage should not be more than 25%.

2.
Materials (Basel) ; 15(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36431354

ABSTRACT

Due to the increasing prices of cement and its harmful effect on the environment, the use of cement has become highly unsustainable in concrete. There is a considerable need for promoting the use of cement replacement materials. This study investigates the effect of variable percentages of metakaolin (MK) on the mechanical and durability performance of concrete. Kaolin clay (KC) was used in the current research to prepare the MK by the calcination process; it was ground in a ball mill to its maximum achievable fineness value of 2550 m2/Kg. Four replacement levels of MK, i.e., 5%, 10%, 15%, and 20% by weight of cement, in addition to control samples, at a constant water-to-cement (w/c) ratio of 0.55 were used. For evaluating the mechanical and durability performance, 27 cubes (6 in. × 6 in. × 6 in.) and 6 cylinders (3.875 in. diameter, 2 in. height) were cast for each mix. These samples were tested for compressive strength under standard conditions and in an acidic environment, in addition to being subjected to water permeability, sorptivity, and water absorption tests. Chemical analysis revealed that MK could be used as pozzolana as per the American Society for Testing and Materials (ASTM C 618:2003). The results demonstrated an increased compressive strength of concrete owing to an increased percentage of MK in the mix with aging. In particular, the concrete having 20% MK after curing under standard conditions exhibited 33.43% higher compressive strength at 90 days as compared to similarly aged control concrete. However, with increasing MK, the workability of concrete decreased drastically. After being subjected to an acid attack (immersing concrete cubes in 2% sulfuric acid solution), the samples exhibited a significant decrease in compressive strength at 90 days in comparison to those without acid attack at the same age. The density of acid attack increased with increasing MK with a maximum corresponding to 5% MK concrete. The current findings suggest that the local MK has the potential to produce good-quality concrete in a normal environment.

3.
Materials (Basel) ; 15(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36234306

ABSTRACT

The useful life of a concrete structure is highly dependent upon its durability, which enables it to withstand the harsh environmental conditions. Resistance of a concrete specimen to rapid chloride ion penetration (RCP) is one of the tests to indirectly measure its durability. The central aim of this study was to investigate the influence of different variables, such as, age, amount of binder, fine aggregate, coarse aggregate, water to binder ratio, metakaolin content and the compressive strength of concrete on the RCP resistance using a genetic programming approach. The number of chromosomes (Nc), genes (Ng) and, the head size (Hs) of the gene expression programming (GEP) model were varied to study their influence on the predicted RCP values. The performance of all the GEP models was assessed using a variety of performance indices, i.e., R2, RMSE and comparison of regression slopes. The optimal GEP model (Model T3) was obtained when the Nc = 100, Hs = 8 and Ng = 3. This model exhibits an R2 of 0.89 and 0.92 in the training and testing phases, respectively. The regression slope analysis revealed that the predicted values are in good agreement with the experimental values, as evident from their higher R2 values. Similarly, parametric analysis was also conducted for the best performing Model T3. The analysis showed that the amount of binder, compressive strength and age of the sample enhanced the RCP resistance of the concrete specimens. Among the different input variables, the RCP resistance sharply increased during initial stages of curing (28-d), thus validating the model results.

4.
Polymers (Basel) ; 14(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35893956

ABSTRACT

In recent times, the use of fibre-reinforced plastic (FRP) has increased in reinforcing concrete structures. The bond strength of FRP rebars is one of the most significant parameters for characterising the overall efficacy of the concrete structures reinforced with FRP. However, in cases of elevated temperature, the bond of FRP-reinforced concrete can deteriorate depending on a number of factors, including the type of FRP bars used, its diameter, surface form, anchorage length, concrete strength, and cover thickness. Hence, accurate quantification of FRP rebars in concrete is of paramount importance, especially at high temperatures. In this study, an artificial intelligence (AI)-based genetic-expression programming (GEP) method was used to predict the bond strength of FRP rebars in concrete at high temperatures. In order to predict the bond strength, we used failure mode temperature, fibre type, bar surface, bar diameter, anchorage length, compressive strength, and cover-to-diameter ratio as input parameters. The experimental dataset of 146 tests at various elevated temperatures were established for training and validating the model. A total of 70% of the data was used for training the model and remaining 30% was used for validation. Various statistical indices such as correlation coefficient (R), the mean absolute error (MAE), and the root-mean-square error (RMSE) were used to assess the predictive veracity of the GEP model. After the trials, the optimum hyperparameters were 150, 8, and 4 as number of chromosomes, head size and number of genes, respectively. Different genetic factors, such as the number of chromosomes, the size of the head, and the number of genes, were evaluated in eleven separate trials. The results as obtained from the rigorous statistical analysis and parametric study show that the developed GEP model is robust and can predict the bond strength of FRP rebars in concrete under high temperature with reasonable accuracy (i.e., R, RMSE and MAE 0.941, 2.087, and 1.620, and 0.935, 2.370, and 2.046, respectively, for training and validation). More importantly, based on the FRP properties, the model has been translated into traceable mathematical formulation for easy calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...