Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716732

ABSTRACT

Previous studies on attrition from MD-PhD programs have shown that students who self-identify as Black are more likely to withdraw before graduating than Hispanic students and students not from groups underrepresented in medicine (non-UIM). Here, we analyzed data collected for the National MD-PhD Program Outcomes Study, a national effort to track the careers of over 10,000 individuals who have graduated from MD-PhD programs over the past 60 years. On average, Black trainees took slightly longer to graduate, were less likely to choose careers in academia, and were more likely to enter nonacademic clinical practice; although, none of these differences were large. Black graduates were also more likely to choose careers in surgery or internal medicine, or entirely forego residency, and less likely to choose pediatrics, pathology, or neurology. Among those in academia, average research effort rates self-reported by Black, Hispanic, and non-UIM alumni were indistinguishable, as were rates of obtaining research grants and mentored training awards. However, the proportion of Black and Hispanic alumni who reported having NIH research grants was lower than that of non-UIM alumni, and the NIH career development to research project grant (K-to-R) conversion rate was lower for Black alumni. We propose that the reasons for these differences reflect experiences before, during, and after training and, therefore, conclude with action items that address each of these stages.


Subject(s)
Black or African American , Career Choice , Hispanic or Latino , Humans , Hispanic or Latino/statistics & numerical data , Black or African American/statistics & numerical data , Male , Female , United States , Biomedical Research/statistics & numerical data , Education, Graduate/statistics & numerical data , Adult
2.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329127

ABSTRACT

The 2014 NIH Physician-Scientist Workforce Working Group predicted a future shortage of physician-scientists. Subsequent studies have highlighted disparities in MD-PhD admissions based on race, income, and education. Our analysis of data from the Association of American Medical Colleges covering 2014-2021 (15,156 applicants and 6,840 acceptees) revealed that acceptance into US MD-PhD programs correlates with research experience, family income, and research publications. The number of research experiences associated with parental education and family income. Applicants were more likely to be accepted with a family income greater than $50,000 or with one or more publications or presentations. Applicants were less likely to be accepted if they had parents without a graduate degree, were Black/African American, were first-generation college students, or were reapplicants, irrespective of the number of research experiences, publications, or presentations. These findings underscore an admissions bias that favors candidates from affluent and highly educated families, while disadvantaging underrepresented minorities.


Subject(s)
Biomedical Research , Education, Medical , Physicians , Humans , Sociodemographic Factors , Biomedical Research/education , Workforce
3.
PLoS One ; 18(12): e0293923, 2023.
Article in English | MEDLINE | ID: mdl-38113238

ABSTRACT

Malaria remains a major public health threat for billions of people worldwide. Infection with obligate intracellular, unicellular parasites from the genus Plasmodium causes malaria. Plasmodium falciparum causes the deadliest form of human malaria. Plasmodium parasites are purine auxotrophic. They rely on purine import from the host red blood cell cytoplasm via equilibrative nucleoside transporters to supply substrates to the purine salvage pathway. We previously developed a high throughput screening assay to identify inhibitors of the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Screening a small molecule library identified PfENT1 inhibitors that blocked proliferation of P. falciparum parasites in in vitro culture. The goal of the current work was to validate a high-resolution model of PfENT1 predicted by the AlphaFold protein structure prediction program. We superimposed the predicted PfENT1 structure on the human homologue structure, hENT1, and developed a structure-based sequence alignment. We mutated the residues in PfENT1 aligned with and flanking the residues in hENT1 that interact with the purine analog, nitrobenzylthioinosine (NBMPR). Mutation of the PfENT1 residues Q135, D287, and R291 that are predicted to form hydrogen bonds to purine nucleosides eliminated purine and pyrimidine transport function in various yeast-based growth and radiolabeled substrate uptake assays. Mutation of two flanking residues, W53 and S290, also resulted in inactive protein. Mutation of L50 that forms hydrophobic interactions with the purine nucleobase reduced transport function. Based on our results the AlphaFold predicted structure for PfENT1 may be useful in guiding medicinal chemistry efforts to improve the potency of our PfENT1 inhibitors.


Subject(s)
Malaria, Falciparum , Malaria , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins , Parasites , Animals , Humans , Purine Nucleosides/metabolism , Parasites/metabolism , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism , Malaria, Falciparum/parasitology , Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae/genetics , Equilibrative Nucleoside Transporter 1
5.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35315357

ABSTRACT

The average age when physician-scientists begin their career has been rising. Here, we focused on one contributor to this change: the increasingly common decision by candidates to postpone applying to MD-PhD programs until after college. This creates a time gap between college and medical school. Data were obtained from 3544 trainees in 73 programs, 72 program directors, and AAMC databases. From 2013 to 2020, the prevalence of gaps rose from 53% to 75%, with the time usually spent doing research. Gap prevalence for MD students also increased but not to the same extent and for different reasons. Differences by gender, underrepresented status, and program size were minimal. Most candidates who took a gap did so because they believed it would improve their chances of admission, but gaps were as common among those not accepted to MD-PhD programs as among those who were. Many program directors preferred candidates with gaps, believing without evidence that gaps reflects greater commitment. Although candidates with gaps were more likely to have a publication at the time of admission, gaps were not associated with a shorter time to degree nor have they been shown to improve outcomes. Together, these observations raise concerns that, by promoting gaps after college, current admissions practices have had unintended consequences without commensurate advantages.


Subject(s)
Physicians , Education, Medical, Graduate , Humans , Research Personnel
6.
JCI Insight ; 7(6)2022 03 22.
Article in English | MEDLINE | ID: mdl-35315364

ABSTRACT

Postgraduate physician-scientist training programs (PSTPs) enhance the experiences of physician-scientist trainees following medical school graduation. PSTPs usually span residency and fellowship training, but this varies widely by institution. Applicant competitiveness for these programs would be enhanced, and unnecessary trainee anxiety relieved, by a clear understanding of what factors define a successful PSTP matriculant. Such information would also be invaluable to PSTP directors and would allow benchmarking of their admissions processes with peer programs. We conducted a survey of PSTP directors across the US to understand the importance they placed on components of PSTP applications. Of 41 survey respondents, most were from internal medicine and pediatrics residency programs. Of all components in the application, two elements were considered very important by a majority of PSTP directors: (a) having one or more first-author publications and (b) the thesis advisor's letter. Less weight was consistently placed on factors often considered more relevant for non-physician-scientist postgraduate applicants - such as US Medical Licensing Examination scores, awards, and leadership activities. The data presented here highlight important metrics for PSTP applicants and directors and suggest that indicators of scientific productivity and commitment to research outweigh traditional quantitative measures of medical school performance.


Subject(s)
Internship and Residency , Physicians , Child , Fellowships and Scholarships , Humans , Research Personnel , Surveys and Questionnaires
7.
Acad Pathol ; 8: 23742895211015347, 2021.
Article in English | MEDLINE | ID: mdl-34046523

ABSTRACT

In February of 2020, New York City was unprepared for the COVID-19 pandemic. Cases of SARS-CoV-2 infection appeared and spread rapidly. Hospitals had to repurpose staff and establish diagnostic testing for this new viral infection. In the background of the usual respiratory pathogen testing performed in the clinical laboratory, SARS-CoV-2 testing at the Montefiore Medical System grew exponentially, from none to hundreds per day within the first week of testing. The job of appropriately routing SARS-CoV-2 viral specimens became overwhelming. Additional staff was required to triage these specimens to multiple in-house testing platforms as well as external reference laboratories. Since medical school classes and many research laboratories shut down at the Albert Einstein College of Medicine and students were eager to help fight the pandemic, we seized the opportunity to engage and train senior MD-PhD students to assist in triaging specimens. This volunteer force enabled us to establish the "Pathology Command Center," staffed by these students as well as residents and furloughed dental associates. The Pathology Command Center staff were tasked with the accessioning and routing of specimens, answering questions from clinical teams, and updating ever evolving protocols developed in collaboration with a team of Infectious Disease clinicians. Many lessons were learned during this process, including how best to restructure an accessioning department and how to properly onboard students and repurpose staff while establishing safeguards for their well-being during these unprecedented times. In this article, we share some of our challenges, successes, and what we ultimately learned as an organization.

8.
J Orthop Res ; 38(10): 2181-2188, 2020 10.
Article in English | MEDLINE | ID: mdl-32198793

ABSTRACT

With the dramatic expansion of the biomedical knowledge base and increasing demands for evidence-based medicine, the role of the clinician-scientist is becoming increasingly important. In orthopaedic surgery, clinician-scientists are at the forefront of translational efforts to address the growing burden of musculoskeletal disease, yet MD-PhD trained investigators have historically been underrepresented in this field. Here, we examine the trend, over time, of MD-PhD graduates pursuing orthopaedic surgery, compared with other specialties. Survey data from the 2018 Association of American Medical Colleges National MD-PhD Program Outcomes Study, including data on 4,647 individuals who had completed residency training and 2,124 who were still in training, were reanalyzed. Numbers, proportions, workplace choice, and percent research effort of MD-PhD graduates completing orthopaedic surgery were compared with other surgical and nonsurgical specialties. Trends over time were analyzed by linear regression. While a decreasing proportion of MD-PhD graduates completed internal medicine training, just 1.1% of MD-PhD graduates completed orthopaedic surgery training, lower than that of all other surgical specialties. The proportion of MD-PhD graduates completing orthopaedic surgery has not increased over time and was mirrored in MD-PhD residents still in training. Though MD-PhDs are increasingly choosing to pursue "nontraditional" specialties, they remain underrepresented in orthopaedic surgery, compared with other clinical disciplines. Thus, there exists an opportunity to encourage MD-PhD graduates to pursue careers in orthopaedic surgery, to supplement the existing intellectual capital in the orthopaedic science workforce. This, along with other strategies to support all orthopaedic surgeon-scientists, will ultimately advance the care of musculoskeletal diseases.


Subject(s)
Education, Medical, Graduate/statistics & numerical data , Orthopedics/statistics & numerical data , Research Personnel/statistics & numerical data , Female , Humans , Male , Surveys and Questionnaires
9.
ACS Infect Dis ; 6(2): 205-214, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31876139

ABSTRACT

Plasmodium falciparum causes the most severe form of malaria and causes approximately 500 000 deaths per year. P. falciparum parasites resistant to current antimalarial treatments are spreading. Therefore, it is imperative to develop new antimalarial drugs. Malaria parasites are purine auxotrophic. They rely on purine import from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Recently, inhibitors of the P. falciparum ENT1 (PfENT1) that inhibit proliferation of malaria parasites in culture have been identified as promising starting points for antimalarial drug development. Genome sequencing of P. falciparum field isolates has identified nonsynonymous single nucleotide polymorphisms (SNPs) in the gene encoding PfENT1. Here we evaluate the impact of these PfENT1 SNPs on purine substrate affinity and inhibitor efficacy. We expressed each PfENT1-SNP in Saccharomyces cerevisiae. Using PfENT1-SNP-expressing yeast, we characterized the PfENT1 purine substrate affinity using radiolabeled substrate uptake inhibition experiments. Four of the 13 SNPs altered affinity for one or more purines by up to 7-fold. Three of the SNPs reduced the potency of a subset of the inhibitors by up to 7-fold. One SNP, Q284E, reduced the potency of all six inhibitor chemotypes. We tested drug efficacy in available parasite strains containing PfENT1 SNPs. While PfENT1-SNP-expressing yeast had decreased sensitivity to PfENT1 inhibitors, parasite strains containing SNPs showed similar or more potent inhibition of proliferation with all PfENT1 inhibitors. Thus, parasite strains bearing PfENT1 SNPs are not resistant to these PfENT1 inhibitors. This supports PfENT1 as a promising target for further development of novel antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/antagonists & inhibitors , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Purines/metabolism , Biological Transport , Drug Development , Drug Resistance , Genome, Protozoan , Inhibitory Concentration 50 , Polymorphism, Single Nucleotide , Saccharomyces cerevisiae/genetics
10.
JCI Insight ; 4(19)2019 10 03.
Article in English | MEDLINE | ID: mdl-31578303

ABSTRACT

In 2015, a nation-wide effort was launched to track the careers of over 10,000 MD-PhD program graduates. Data were obtained by surveys sent to alumni, inquiries sent to program directors, and searches in American Association of Medical Colleges (AAMC) databases. Here, we present an analysis of the data, focusing on the impact of sex, race, and ethnicity on career outcomes. The results show that diversity among trainees has increased since the earliest MD-PhD programs, although it still lags considerably behind the US population. Training duration, which includes time to graduation as well as time to first independent position, was similar for men and women and for minority and nonminority alumni, as were most choices of medical specialties. Regardless of minority status and sex, most survey responders reported that they are working in academia, research institutes, federal agencies, or industry. These similarities were, however, accompanied by several noteworthy differences: (a) Based on AAMC Faculty Roster data rather than survey responses, women were less likely than men to have had a full-time faculty appointment, (b) minorities who graduated after 1985 had a longer average time to degree than nonminorities, (c) fewer women and minorities have NIH grants, (d) fewer women reported success in moving from a mentored to an independent NIH award, and (e) women in the most recent graduation cohort reported spending less time on research than men. Collectively, these results suggest that additional efforts need to be made to recruit women and minorities into MD-PhD programs and, once recruited, to understand the drivers behind the differences that have emerged in their career paths.


Subject(s)
Biomedical Research/education , Career Choice , Education, Medical, Graduate , Ethnicity , Awards and Prizes , Cohort Studies , Faculty , Female , Humans , Male , Research , Research Personnel , Surveys and Questionnaires , Training Support , United States
11.
JCI Insight ; 4(19)2019 10 03.
Article in English | MEDLINE | ID: mdl-31578310

ABSTRACT

MD-PhD programs were established in the 1950s as a new curriculum for training physician-scientists. Since then, the number of programs has grown considerably; however, concerns about the health of the US physician-scientist workforce have grown, as well. The largest attempt to date to assess whether MD-PhD programs are fulfilling their mission was the national MD-PhD program outcomes study, which was released as an American Association of Medical Colleges report in 2018. That study gathered information on 10,591 graduates of 80 MD-PhD programs over 50 years and concluded that most graduates have followed careers consistent with their training. Here, we provide additional analysis, drawing on survey data provided by 64.1% of alumni (75.9% of alumni with valid email addresses), plus program-supplied current workplace data for survey nonresponders to examine the relationships between medical specialty choices, training duration, research effort, and success in obtaining research funding. The results show that residency choices affect critical aspects of the physician-scientist career path, including where graduates work, how long it takes them to obtain an independent appointment in academia, and the amount of their professional time that is devoted to research. Entrants into MD-PhD programs are older, on average, now than when the programs were first established and are taking longer to graduate and complete postgraduate training. Although we found a positive relationship between professional effort devoted to research and the likelihood of having research funding, we found little evidence that the increase in training duration produces an increase in subsequent research effort. These data should provide both guidance for anyone considering this career path and insights for those who train and hire the next generation of physician-scientists.


Subject(s)
Biomedical Research/education , Career Choice , Education, Medical, Graduate , Education, Medical , Physicians , Biomedical Research/trends , Female , Humans , Internship and Residency , Male , Outcome Assessment, Health Care , Research , Surveys and Questionnaires , Teaching , Training Support , United States , Workforce , Workplace
12.
ACS Infect Dis ; 5(10): 1738-1753, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31373203

ABSTRACT

Emerging resistance to current antimalarial medicines underscores the importance of identifying new drug targets and novel compounds. Malaria parasites are purine auxotrophic and import purines via the Plasmodium falciparum equilibrative nucleoside transporter type 1 (PfENT1). We previously showed that PfENT1 inhibitors block parasite proliferation in culture. Our goal was to identify additional, possibly more optimal chemical starting points for a drug discovery campaign. We performed a high throughput screen (HTS) of GlaxoSmithKline's 1.8 million compound library with a yeast-based assay to identify PfENT1 inhibitors. We used a parallel progression strategy for hit validation and expansion, with an emphasis on chemical properties in addition to potency. In one arm, the most active hits were tested for human cell toxicity; 201 had minimal toxicity. The second arm, hit expansion, used a scaffold-based substructure search with the HTS hits as templates to identify over 2000 compounds; 123 compounds had activity. Of these 324 compounds, 175 compounds inhibited proliferation of P. falciparum parasite strain 3D7 with IC50 values between 0.8 and ∼180 µM. One hundred forty-two compounds inhibited PfENT1 knockout (pfent1Δ) parasite growth, indicating they also hit secondary targets. Thirty-two hits inhibited growth of 3D7 but not pfent1Δ parasites. Thus, PfENT1 inhibition was sufficient to block parasite proliferation. Therefore, PfENT1 may be a viable target for antimalarial drug development. Six compounds with novel chemical scaffolds were extensively characterized in yeast-, parasite-, and human-erythrocyte-based assays. The inhibitors showed similar potencies against drug sensitive and resistant P. falciparum strains. They represent attractive starting points for development of novel antimalarial drugs.


Subject(s)
Antimalarials/pharmacology , Biological Transport/drug effects , Cell Proliferation/drug effects , Drug Discovery , Plasmodium falciparum/drug effects , Purines/metabolism , Antimalarials/chemistry , Erythrocytes/drug effects , Gene Knockout Techniques , Hep G2 Cells/drug effects , High-Throughput Screening Assays , Humans , Malaria/parasitology , Malaria, Falciparum/parasitology , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/drug effects , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/drug effects , Protozoan Proteins/genetics , Transcriptome , Yeasts/drug effects
13.
J Biol Chem ; 294(6): 1924-1935, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30541922

ABSTRACT

Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophic. They import purines via an equilibrative nucleoside transporter (ENT). In P. falciparum, the most virulent species, the equilibrative nucleoside transporter 1 (PfENT1) represents the primary purine uptake pathway. This transporter is a potential target for the development of antimalarial drugs. In the absence of a high-resolution structure for either PfENT1 or a homologous ENT, we used the substituted cysteine accessibility method (SCAM) to investigate the membrane-spanning domain structure of PfENT1 to identify potential inhibitor-binding sites. We previously used SCAM to identify water-accessible residues that line the permeation pathway in transmembrane segment 11 (TM11). TM2 and TM10 lie adjacent to TM11 in an ab initio model of a homologous Leishmania donovani nucleoside transporter. To identify TM2 and TM10 residues in PfENT1 that are at least transiently on the water-accessible transporter surface, we assayed the reactivity of single cysteine-substitution mutants with three methanethiosulfonate (MTS) derivatives. Cysteines substituted for 12 of 14 TM2 segment residues reacted with MTS-ethyl-ammonium-biotin (MTSEA-biotin). At eight positions, MTSEA-biotin inhibited transport, and at four positions substrate transport was potentiated. On an α helical wheel projection of TM2, the four positions where potentiation occurred were located in a cluster on one side of the helix. In contrast, although MTSEA-biotin inhibited 9 of 10 TM10 cysteine-substituted mutants, the reactive residues did not form a pattern consistent with either an α helix or ß sheet. These results may help identify the binding site(s) of PfENT1 inhibitors.


Subject(s)
Amino Acid Substitution/genetics , Cell Membrane Permeability/genetics , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/antagonists & inhibitors , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Antimalarials , Binding Sites , Biological Transport , Cysteine , Drug Design , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum , Protozoan Proteins/genetics , Purines/metabolism , Solubility , Water/chemistry
14.
Acad Med ; 93(2): 150-151, 2018 02.
Article in English | MEDLINE | ID: mdl-29377855

Subject(s)
Physicians
15.
Acad Med ; 92(10): 1390-1398, 2017 10.
Article in English | MEDLINE | ID: mdl-28658019

ABSTRACT

Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.


Subject(s)
Biomedical Research/education , Education, Medical, Graduate/history , Education/history , Research Personnel/education , Biomedical Research/history , Education, Medical, Graduate/methods , History, 20th Century , History, 21st Century , Humans , National Institutes of Health (U.S.) , Research Personnel/history , Training Support , United States
16.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Article in English | MEDLINE | ID: mdl-27467575

ABSTRACT

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Subject(s)
Antimalarials/therapeutic use , Datasets as Topic , Drug Discovery/methods , Malaria/drug therapy , Neglected Diseases/drug therapy , Drug Evaluation, Preclinical , Humans , Small Molecule Libraries
17.
Mol Pharmacol ; 89(6): 678-85, 2016 06.
Article in English | MEDLINE | ID: mdl-27048953

ABSTRACT

Malaria is a critical public health issue in the tropical world, causing extensive morbidity and mortality. Infection by unicellular, obligate intracellular Plasmodium parasites causes malaria. The emergence of resistance to current antimalarial drugs necessitates the development of novel therapeutics. A potential novel drug target is the purine import transporter. Because Plasmodium parasites are purine auxotrophic, they must import purines from their host to fulfill metabolic requirements. They import purines via equilibrative nucleoside transporter 1 (ENT1) homologs. Recently, we used a yeast-based high-throughput screen to identify inhibitors of the P. falciparum ENT1 (PfENT1) that kill P. falciparum parasites in culture. P. berghei infection of mice is an animal model for human malaria. Because P. berghei ENT1 (PbENT1) shares only 60% amino acid sequence identity with PfENT1, we sought to characterize PbENT1 and its sensitivity to our PfENT1 inhibitors. We expressed PbENT1 in purine auxotrophic yeast and used radiolabeled substrate uptake to characterize its function. We showed that PbENT1 transports both purines and pyrimidines. It preferred nucleosides compared with nucleobases. Inosine (IC50 = 3.7 µM) and guanosine (IC50 = 21.3 µM) had the highest affinities. Our recently discovered PfENT1 inhibitors were equally effective against both PbENT1- and PfENT1-mediated purine uptake. The PfENT1 inhibitors are at least 10-fold more potent against PfENT1 than human hENT1. They kill P. berghei parasites in 24-hour ex vivo culture. Thus, the P. berghei murine malaria model may be useful to evaluate the efficacy of PfENT1 inhibitors in vivo and their therapeutic potential for treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Equilibrative Nucleoside Transporter 1/metabolism , Plasmodium berghei/metabolism , Adenosine/metabolism , Animals , Female , Humans , Inhibitory Concentration 50 , Mice , Saccharomyces cerevisiae/metabolism , Substrate Specificity/drug effects , Time Factors , Tritium/metabolism , Uridine/metabolism
18.
Med Educ Online ; 21: 30000, 2016.
Article in English | MEDLINE | ID: mdl-26847852

ABSTRACT

The Albert Einstein College of Medicine (Einstein) was founded in 1955 during an era of limited access to medical school for women, racial minorities, and many religious and ethnic groups. Located in the Bronx, NY, Einstein seeks to educate physicians in an environment of state-of-the-art scientific inquiry while simultaneously fulfilling a deep commitment to serve its community by providing the highest quality clinical care. A founding principle of Einstein, the basis upon which Professor Einstein agreed to allow the use of his name, was that admission to the student body would be based entirely on merit. To accomplish this, Einstein has long used a 'holistic' approach to the evaluation of its applicants, actively seeking a diverse student body. More recently, in order to improve its ability to identify students with the potential to be outstanding physicians, who will both advance medical knowledge and serve the pressing health needs of a diverse community, the Committee on Admissions reexamined and restructured the requirements for admission. These have now been categorized as four 'Admissions Competencies' that an applicant must demonstrate. They include: 1) cocurricular activities and relevant experiences; 2) communication skills; 3) personal and professional development; and 4) knowledge. The purpose of this article is to describe the process that resulted in the introduction and implementation of this competency based approach to the admission process.


Subject(s)
Cultural Diversity , School Admission Criteria , Schools, Medical/organization & administration , College Admission Test , Communication , Humans , Knowledge , Schools, Medical/standards
19.
Int J Parasitol Drugs Drug Resist ; 6(1): 1-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26862473

ABSTRACT

Infection with Plasmodium falciparum and vivax cause most cases of malaria. Emerging resistance to current antimalarial medications makes new drug development imperative. Ideally a new antimalarial drug should treat both falciparum and vivax malaria. Because malaria parasites are purine auxotrophic, they rely on purines imported from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Thus, the purine import transporters represent a potential target for antimalarial drug development. For falciparum parasites the primary purine transporter is the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Recently we identified potent PfENT1 inhibitors with nanomolar IC50 values using a robust, yeast-based high throughput screening assay. In the current work we characterized the Plasmodium vivax ENT1 (PvENT1) homologue and its sensitivity to the PfENT1 inhibitors. We expressed a yeast codon-optimized PvENT1 gene in Saccharomyces cerevisiae. PvENT1-expressing yeast imported both purines ([(3)H]adenosine) and pyrimidines ([(3)H]uridine), whereas wild type (fui1Δ) yeast did not. Based on radiolabel substrate uptake inhibition experiments, inosine had the lowest IC50 (3.8 µM), compared to guanosine (14.9 µM) and adenosine (142 µM). For pyrimidines, thymidine had an IC50 of 183 µM (vs. cytidine and uridine; mM range). IC50 values were higher for nucleobases compared to the corresponding nucleosides; hypoxanthine had a 25-fold higher IC50 than inosine. The archetypal human ENT1 inhibitor 4-nitrobenzylthioinosine (NBMPR) had no effect on PvENT1, whereas dipyridamole inhibited PvENT1, albeit with a 40 µM IC50, a 1000-fold less sensitive than human ENT1 (hENT1). The PfENT1 inhibitors blocked transport activity of PvENT1 and the five known naturally occurring non-synonymous single nucleotide polymorphisms (SNPs) with similar IC50 values. Thus, the PfENT1 inhibitors also target PvENT1. This implies that development of novel antimalarial drugs that target both falciparum and vivax ENT1 may be feasible.


Subject(s)
Antimalarials/pharmacology , Drug Discovery , Equilibrative Nucleoside Transporter 1/antagonists & inhibitors , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/antagonists & inhibitors , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Adenosine/pharmacology , Dipyridamole/pharmacology , Equilibrative Nucleoside Transporter 1/genetics , Guanosine/pharmacology , Humans , Inhibitory Concentration 50 , Inosine/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , Malaria, Vivax/prevention & control , Nucleobase, Nucleoside, Nucleotide, and Nucleic Acid Transport Proteins/genetics , Plasmodium falciparum/metabolism , Plasmodium vivax/genetics , Polymorphism, Single Nucleotide , Protozoan Proteins/genetics , Purines/metabolism , Purines/pharmacology , Pyrimidines/metabolism , Saccharomyces cerevisiae/genetics , Uridine/pharmacology
20.
Adv Exp Med Biol ; 869: 25-54, 2015.
Article in English | MEDLINE | ID: mdl-26381939

ABSTRACT

Cysteine substitution has been a powerful tool to investigate the structure and function of proteins. It has been particularly useful for studies of membrane proteins in their native environment, embedded in phospholipid membranes. Among the 20 amino acids, cysteine is uniquely reactive. This reactivity has motivated the synthesis of a wide array of sulfhydryl reactive chemicals. The commercially available array of sulfhydryl reactive reagents has allowed investigators to probe the local steric and electrostatic environment around engineered cysteines and to position fluorescent, paramagnetic and mass probes at specific sites within proteins and for distance measurements between pairs of sites. Probing the reactivity and accessibility of engineered cysteines has been extensively used in Substituted Cysteine Accessibility Method (SCAM) investigations of ion channels, membrane transporters and receptors. These studies have successfully identified the residues lining ion channels, agonist/antagonist and allosteric modulator binding sites, and regions whose conformation changes as proteins transition between different functional states. The thousands of cysteine-substitution mutants reported in the literature demonstrate that, in general, mutation to cysteine is well tolerated. This has allowed systematic studies of residues in transmembrane segments and in other parts of membrane proteins. Finally, by inserting pairs of cysteines and assaying their ability to form disulfide bonds, changes in proximity and mobility relationships between specific positions within a protein can be inferred. Thus, cysteine mutagenesis has provided a wealth of data on the structure of membrane proteins in their functional environment. This data can complement the structural insights obtained from the burgeoning number of crystal structures of detergent solubilized membrane proteins whose functional state is often uncertain. This article will review the use of cysteine mutagenesis to probe structure-function relationships in ion channels focusing mainly on Cys-loop receptors.


Subject(s)
Cysteine Loop Ligand-Gated Ion Channel Receptors/metabolism , Ion Channel Gating , Animals , Binding Sites , Cysteine , Cysteine Loop Ligand-Gated Ion Channel Receptors/chemistry , Cysteine Loop Ligand-Gated Ion Channel Receptors/genetics , Humans , Ion Transport , Ligands , Membrane Potentials , Models, Chemical , Mutagenesis, Site-Directed , Mutation , Protein Binding , Protein Conformation , Reducing Agents/chemistry , Static Electricity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...