Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Artif Organs ; 15(2): 119-27, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22038496

ABSTRACT

The "washout effect" inside a blood pump may depend in part on the configuration of the blood pump, including its "port angle." The port angle, which is primarily decided based on anatomical considerations, may also be important from the rheological viewpoint. In our department, a next-generation diaphragm-type blood pump is being developed. In this study, we examined the influence of the port angle on flow conditions inside our new blood pump. Acrylic resin mock pumps with three different port angles (0°, 30°, and 45°) were prepared for flow visualization. Mechanical monoleaflet valves were mounted on the inlet and outlet ports of the mock pumps. Flow conditions within the mock pumps were visualized by means of particle image velocimetry during a half stroke. As a result, a high flow velocity region was seen along the main circular flow from the inlet to the outlet port. This circular flow was almost uniform and parallel to the plane of the diaphragm-housing junction (DhJ) when viewed from the inlet and outlet sides. Moreover, the proportion of high flow velocity vectors in the plane in the vicinity of the DhJ decreased as the degree of the port angle increased. In conclusion, we found that the flow behavior in the plane in the vicinity of the DhJ changed with the port angle, and that a port angle of 0° may be suitable for our diaphragm-type blood pump in view of the washout effect.


Subject(s)
Blood Flow Velocity/physiology , Heart-Assist Devices , Pulsatile Flow/physiology , Prosthesis Design
2.
J Artif Organs ; 12(2): 98-104, 2009.
Article in English | MEDLINE | ID: mdl-19536626

ABSTRACT

Our group is currently developing a pneumatic ventricular assist device (PVAD). In this study, in order to select the optimal bileaflet valve for our PVAD, three kinds of bileaflet valve were installed and the flow was visualized downstream of the outlet valve using the particle image velocimetry (PIV) method. To carry out flow visualization inside the blood pump and near the valve, we designed a model pump that had the same configuration as our PVAD. The three bileaflet valves tested were a 21-mm ATS valve, a 21-mm St. Jude valve, and a 21-mm Sorin Bicarbon valve. The mechanical heart valves were mounted at the aortic position of the model pump and the flow was visualized by using the PIV method. The maximum flow velocity was measured at three distances (0, 10, and 30 mm) from the valve plane. The maximum flow velocity of the Sorin Bicarbon valve was less than that of the other two valves; however, it decreased slightly with increasing distance it the X-Y plane in all three valves. Although different bileaflet valves are very similar in design, the geometry of the leaflet is an important factor when selecting a mechanical heart valve for use in an artificial heart.


Subject(s)
Heart-Assist Devices , Hemorheology , Prosthesis Design , Humans
3.
J Artif Organs ; 11(2): 60-6, 2008.
Article in English | MEDLINE | ID: mdl-18604610

ABSTRACT

To investigate the characteristics of cavitation intensity, we performed a synchronized analysis of the visual images of cavitation and the pressure signals using a pulsatile device. The pulsatile device employed was a pneumatic ventricular assist device (PVAD) that is currently being developed by our group. A 23-mm Medtronic Hall valve (M-H valve) and a 23-mm Sorin Bicarbon bileaflet valve (S-B valve) were mounted in the inlet port of the PVAD after the sewing ring had been removed. A function generator provided a square signal, which was used as the trigger signal, via Electrocardiogram R wave (ECG-R) mode, of the control - drive console for circulatory support. The square signal was also used, after a suitable delay, to synchronize operation of a pressure sensor and a high-speed video camera. The data were stored using a digital oscilloscope at a 1-MHz sampling rate, and then the pressure signal was band-pass filtered between 35 and 200 kHz using a digital filter. The valve-closing velocity, visual cavitation time, and root mean square (RMS) pressure of the M-H valve were greater than those of the S-B valve. Both the visual cavitation time and RMS pressure represent the cavitation intensity, and this is a very important factor when estimating mechanical heart valve cavitation intensity in an artificial heart.


Subject(s)
Heart Valve Prosthesis , Electrocardiography , Heart-Assist Devices , Pressure , Video Recording
4.
J Artif Organs ; 11(4): 182-90, 2008.
Article in English | MEDLINE | ID: mdl-19184282

ABSTRACT

The purpose of this study was to develop a compact wearable pneumatic drive unit for a ventricular assist device (VAD). This newly developed drive unit, 20 x 8.5 x 20 cm in size and weighing approximately 1.8 kg, consists of a brushless DC motor, noncircular gears, a crankshaft, a cylinder-piston, and air pressure regulation valves. The driving air pressure is generated by the reciprocating motion of the piston and is controlled by the air pressure regulation valves. The systolic ratio is determined by the noncircular gears, and so is fixed for a given configuration. As a result of an overflow-type mock circulation test, a drive unit with a 44% systolic ratio connected to a Toyobo VAD blood pump with a 70-ml stroke volume achieved a pump output of more than 7 l/min at 100 bpm against a 120 mmHg afterload. Long-term animal tests were also performed using drive units with systolic ratios of 45% and 53% in two Holstein calves weighing 62 kg and 74 kg; the tests were terminated on days 30 and 39, respectively, without any malfunction. The mean aortic pressure, bypass flow, and power consumption for the first calf were maintained at 90 x 13 mmHg, 3.9 x 0.9 l/min, and 12 x 1 W, and those for the second calf were maintained at 88 x 13 mmHg, 5.0 x 0.5 l/min, and 16 x 2 W, respectively. These results indicate that the newly developed drive unit may be used as a wearable pneumatic drive unit for the Toyobo VAD blood pump.


Subject(s)
Electric Power Supplies , Heart-Assist Devices , Animals , Cattle , Equipment Design
5.
J Artif Organs ; 10(3): 181-5, 2007.
Article in English | MEDLINE | ID: mdl-17846718

ABSTRACT

In this study, we investigated the possibility of estimating the mechanical heart valve (MHV) cavitation intensity using the slope of the driving pressure (DP) just before valve closure in a pneumatic ventricular assist device. We installed a 23-mm Medtronic Hall valve at the inlet of our pneumatic ventricular assist device (VAD). Tests were conducted under physiologic pressures at heart rates ranging from 60 to 90 beats/min and cardiac outputs ranging from 4.5 to 6.7 l/min. The valve-closing velocity was measured with a CCD laster displacement sensor, and the images of MHV cavitation were recorded using a high-speed video camera. The cavitation cycle time (equal to the observed duration of the cavitation bubbles) was used as the MHV cavitation intensity. The valve-closing velocity increased as the heart rate increased. Most of the cavitation bubbles were observed near the valve stop, and the cavitation intensity increased as the heart rate increased. The slope of the DP at 20 ms before valve closure was used as an index of the cavitation intensity. There were differences in the slope of the DP between low and high heart rates, but the slope of the DP had a tendency to linearly increase with increasing valve-closing velocity.


Subject(s)
Heart Valve Prosthesis/adverse effects , Heart-Assist Devices , Materials Testing , Biomechanical Phenomena , Equipment Failure Analysis/methods , Hemodynamics , Hemorheology , Humans , Models, Cardiovascular , Prosthesis Design , Prosthesis Failure
6.
J Artif Organs ; 10(2): 85-91, 2007.
Article in English | MEDLINE | ID: mdl-17574510

ABSTRACT

We have been developing a pneumatic ventricular assist device (PVAD) system consisting of a diaphragm-type blood pump. The objective of the present study was to evaluate the flow pattern inside the PVAD, which may greatly affect thrombus formation, with respect to the inflow valve-mount orientation. To analyze the change of flow behavior caused by the orifice direction (OD) of the valve, the flow pattern in this pump was visualized. Particle image velocimetry was used as a measurement technique to visualize the flow dynamics. A monoleaflet mechanical valve was mounted in the inlet and outlet ports of the PVAD, which was connected to a mock circulatory loop tester. The OD of the inlet valve was set at six different angles (OD = 0 degrees, 45 degrees, 90 degrees, 135 degrees, 180 degrees, and 270 degrees, where the OD opening toward the diaphragm was defined as 0 degrees ) and the pump rate was fixed at 80 bpm to create a 5.0 l/min flow rate. The main circular flow in the blood pump was affected by the OD of the inlet valve. The observed regional flow velocity was relatively low in the area between the inlet and outlet port roots, and was lowest at an OD of 90 degrees. In contrast, the regional flow velocity in this area was highest at an OD of 135 degrees. The OD is an important factor in optimizing the flow condition in our PVAD in terms of preventing flow stagnation, and the best flow behavior was realized at an OD of 135 degrees.


Subject(s)
Blood Flow Velocity/physiology , Heart-Assist Devices , Prosthesis Design , Thrombosis/physiopathology , Hemorheology/instrumentation , Humans
7.
Biorheology ; 41(6): 665-80, 2004.
Article in English | MEDLINE | ID: mdl-15851843

ABSTRACT

Neointimal hyperplasia influenced by intravascular hemodynamics is considered partly responsible for restenosis after endovascular stenting. To evaluate the effect of stent configuration on fluid flow behavior, we visualized flow near stents, and measured the proliferation of cultured endothelial cells (ECs). A single-coil stent (coil pitch; CP = 2.5, 5, or 10 mm) was inserted into a glass tube and perfused at 30-90 ml/min, while the flow pattern was determined by particle imaging velocimetry. The reduction of the flow velocity near the wall was correlated with the decrease in the coil interval of the stent. In perfusion cultures with stents, the proliferation of ECs was influenced by the local flow velocity distribution. When a stent with a CP value of 10 mm was used, the doubling time of ECs was 30.7 h, while the doubling time was 38.5 h when the CP was 5 mm. The doubling time of ECs was shorter at sites upstream of the stent wire where the velocity was higher than downstream of the wire. In conclusion, a single-coil stent can be used to modify hemodynamic factors, suggesting that improved stent design may facilitate rapid endothelialization after stent implantation.


Subject(s)
Coronary Restenosis/etiology , Coronary Vessels/pathology , Stents , Tunica Intima/pathology , Blood Flow Velocity , Cell Proliferation , Coated Materials, Biocompatible , Coronary Restenosis/pathology , Equipment Design , Hemorheology , Humans , In Vitro Techniques , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...