Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 73(2): 168-179, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37404346

ABSTRACT

The isolation of disease resistance genes introduced from wild or related cultivated species is essential for understanding their mechanisms, spectrum and risk of breakdown. To identify target genes not included in reference genomes, genomic sequences with the target locus must be reconstructed. However, de novo assembly approaches of the entire genome, such as those used for constructing reference genomes, are complicated in higher plants. Moreover, in the autotetraploid potato, the heterozygous regions and repetitive structures located around disease resistance gene clusters fragment the genomes into short contigs, making it challenging to identify resistance genes. In this study, we report that a de novo assembly approach of a target gene-specific homozygous dihaploid developed through haploid induction was suitable for gene isolation in potatoes using the potato virus Y resistance gene Rychc as a model. The assembled contig containing Rychc-linked markers was 3.3 Mb in length and could be joined with gene location information from the fine mapping analysis. Rychc was successfully identified in a repeated island located on the distal end of the long arm of chromosome 9 as a Toll/interleukin-1 receptor-nucleotide-binding site-leucine rich repeat (TIR-NBS-LRR) type resistance gene. This approach will be practical for other gene isolation projects in potatoes.

2.
Plant Biotechnol (Tokyo) ; 40(3): 211-218, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-38420569

ABSTRACT

Genome editing is highly useful for crop improvement. The method of expressing genome-editing enzymes using a transient expression system in Agrobacterium, called agrobacterial mutagenesis, is a shortcut used in genome-editing technology to improve elite varieties of vegetatively propagated crops, including potato. However, with this method, edited individuals cannot be selected. The transient expression of regeneration-promoting genes can result in shoot regeneration from plantlets, while the constitutive expression of most regeneration-promoting genes does not result in normally regenerated shoots. Here, we report that we could obtain genome-edited potatoes by positive selection. These regenerated shoots were obtained via a method that combined a regeneration-promoting gene with the transient expression of a genome-editing enzyme gene. Moreover, we confirmed that the genome-edited potatoes obtained using this method did not contain the sequence of the binary vector used in Agrobacterium. Our data have been submitted to the Japanese regulatory authority, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and we are in the process of conducting field tests for further research on these potatoes. Our work presents a powerful method for regarding regeneration and acquisition of genome-edited crops through transient expression of regeneration-promoting gene.

3.
BMC Plant Biol ; 22(1): 302, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35725378

ABSTRACT

BACKGROUND: Tetrad sterility in potato is caused by a specific cytoplasm, called TSCsto, derived from the Mexican wild tetraploid species Solanum stoloniferum. Different S. stoloniferum accessions crossed as females with S. tuberosum resulted in 12 fertile hybrids and 27 sterile hybrids exhibiting tetrad sterility. RESULTS: Whole-mitochondrial-genome sequencing was performed for two fertile hybrids and three hybrids exhibiting tetrad sterility. Two to seven contigs, with the total assembly lengths ranging from 462,716 to 535,375 bp, were assembled for each hybrid. Unlike for the reference mitochondrial genome (cv. Désirée), two different recombinant-type contigs (RC-I and RC-II) were identified. RC-I featured by the rpl5-ψrps14 gene joined to the nad6 gene, generating a novel intergenic region. Using a PCR marker (P-3), we found that this intergenic region occurred exclusively in interspecific hybrids exhibiting tetrad sterility and in their parental S. stoloniferum accessions. A part of this intergenic sequence was expressed in the pollen. From a large survey in which P-3 was applied to 129 accessions of 27 mostly Mexican wild species, RC-I was found in diploid S. verrucosum and polyploid species. From eight accessions of S. verrucosum used as females, 92 interspecific hybrids were generated, in which only those carrying RC-I exhibited tetrad sterility. CONCLUSIONS: RC-I was clearly associated with tetrad sterility, and the RC-I-specific intergenic region likely contains a causal factor of tetrad sterility.


Subject(s)
Infertility , Solanum tuberosum , DNA, Intergenic , DNA, Mitochondrial/genetics , Infertility/genetics , Pollen/genetics , Solanum tuberosum/genetics
4.
Breed Sci ; 71(3): 354-364, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34776742

ABSTRACT

Occurrence of pale potato cyst nematode, Globodera pallida (Stone) Behrens, was first recorded in Japan in 2015. Among several control measures, cultivation of resistant potato (Solanum tuberosum L.) varieties is the most effective in cost and environmental impact. As no G. pallida-resistant varieties have yet been developed in Japan, great emphasis is being placed on screening of germplasm possessing the resistance and development of the resistant varieties. In this study, we first improved previously reported DNA markers linked to the G. pallida resistance loci (GpaIVs adg and Gpa5) and then used these to screen more than 1,000 germplasms to select several candidate germplasms with resistance. We performed inoculation testing on the selected candidates and identified several resistant germplasms to the Japanese G. pallida population. Furthermore, we developed a simultaneous detection method combining three DNA markers linked to G. pallida and Globodera rostochiensis (Wollenweber) Behrens resistance loci. We validated the ability of C237-I marker to select resistant allele of GpaIVs adg and predict the presence of resistance in a Japanese breeding population. Resistant germplasms identified in this study could potentially be used to develop G. pallida-resistant varieties. The marker evaluation methods developed in this study will contribute to the efficient development of resistant varieties.

5.
Plant Biotechnol J ; 19(10): 2040-2051, 2021 10.
Article in English | MEDLINE | ID: mdl-34008333

ABSTRACT

Potato (Solanum tuberosum L.) and sweetpotato (Ipomoea batatas L.), which are nutritionally and commercially important tuberous crops, possess a perplexing heredity because of their autopolyploid genomes. To reduce cross-breeding efforts for selecting superior cultivars from progenies with innumerable combinations of traits, DNA markers tightly linked to agronomical traits are required. To develop DNA markers, we developed a method for quantitative trait loci (QTL) mapping using whole-genome next-generation sequencing (NGS) in autopolyploid crops. To apply the NGS-based bulked segregant method, QTL-seq was modified. (1) Single parent-specific simplex (unique for one homologous chromosome) single-nucleotide polymorphisms (SNPs), which present a simple segregation ratio in the progenies, were exploited by filtering SNPs by SNP index (allele frequency). (2) Clusters of SNPs, which were inherited unevenly between bulked progenies with opposite phenotypes, especially those with an SNP index of 0 for the bulk that did not display the phenotypes of interest, were explored. These modifications allowed for separate tracking of alleles located on each of the multiple homologous chromosomes. By applying this method, clusters of SNPs linked to the potato cyst nematode resistance H1 gene and storage root anthocyanin (AN) content were identified in tetraploid potato and hexaploid sweetpotato, respectively, and completely linked DNA markers were developed at the site of the presented SNPs. Thus, polyploid QTL-seq is a versatile method that is free from specialized manipulation for sequencing and construction of elaborate linkage maps and facilitates rapid development of tightly linked DNA markers in autopolyploid crops, such as potato and sweetpotato.


Subject(s)
Ipomoea batatas , Solanum tuberosum , Genetic Markers , Ipomoea batatas/genetics , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Polyploidy , Quantitative Trait Loci/genetics , Solanum tuberosum/genetics
6.
Sci Rep ; 11(1): 6266, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737607

ABSTRACT

Tuber infection of Phytophthora infestans often occurs at harvest. However, it is difficult to accurately estimate the population densities of P. infestans in soil, especially Japanese soil. In the present study, P. infestans DNA was extracted from soil samples using a modified CTAB-bead method and quantified using real-time PCR to accurately, rapidly and easily estimate the P. infestans population densities in upland soils in Japan. P. infestans was well quantified in eleven types of soil samples, including nine types of upland soils in Japan, that were artificially inoculated with a zoosporangia suspension. The amounts of P. infestans DNA estimated by the real-time PCR were proportional to the inoculum densities. In the non-controlled experimental potato field, P. infestans population densities in soil corresponded to the development of symptoms and were correlated with the number of lesions on the potato foliage. These results imply that the proposed real-time PCR assay is suitable for the estimation or monitoring of P. infestans population densities in upland soils in Japan. The population densities at the ridge bottoms were larger than those at any other location in commercial potato fields. These results were similar to those of a previous report using a bioassay. Moreover, a correlation between DNA quantity and inoculum potential was observed. In conclusion, the real-time PCR assay developed in this study is suitable for indirect estimation of the inoculum potential of P. infestans.


Subject(s)
Phytophthora infestans/genetics , Plant Diseases/parasitology , Plant Tubers/parasitology , Real-Time Polymerase Chain Reaction/methods , Soil Microbiology , Soil/parasitology , Solanum tuberosum/parasitology , DNA/genetics , DNA/isolation & purification , Japan
7.
FEMS Microbiol Lett ; 363(14)2016 07.
Article in English | MEDLINE | ID: mdl-27190160

ABSTRACT

Emergence of races in Fusarium oxysporum f. sp. lycopersici (Fol) is caused by loss or mutation of at least one avirulence (AVR) gene. The product of AVR1 is a small protein (Avr1) secreted by Fol in tomato xylem sap during infection. This protein triggers Fol race 1 specific resistance (I) in tomato, indicating that AVR1 is an AVR gene. Deletion of AVR1 in race 1 resulted in the emergence of race 2, and an additional mutation in AVR2 generated race 3. Previously, we reported a new biotype of race 3, KoChi-1, in which AVR1 was truncated by a transposon Hormin, which suggested a new route to evolution of races in Fol However, to date no race 2 isolate carrying Hormin-truncated AVR1 has been reported. In this report, we describe such isolates, represented by Chiba-5, in which Hormin insertion occurred in AVR1 at a position different from that in KoChi-1. AVR1 truncation in both isolates resulted in production of defective Avr1 proteins. Chiba-5 and KoChi-1 belong to different phylogenetic clades, A1 and A2, respectively, suggesting that insertion of Hormin in AVR1 in Chiba-5 and KoChi-1 occurred as independent evolutionary events.


Subject(s)
DNA Transposable Elements , Fusarium/genetics , Mutation , Chromosome Mapping , Chromosomes, Fungal , Disease Resistance , Fusarium/classification , Fusarium/pathogenicity , Genetic Complementation Test , Genome, Fungal , Solanum lycopersicum/microbiology , Mutagenesis, Insertional , Phylogeny , Plant Diseases/microbiology , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...