Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979204

ABSTRACT

Type I interferons (IFN-I) are cytokines with potent antiviral and inflammatory capacities. IFN-I signaling drives the expression of hundreds of IFN-I stimulated genes (ISGs), whose aggregate function results in the control of viral infection. A few of these ISGs are tasked with negatively regulating the IFN-I response to prevent overt inflammation. ISG15 is a negative regulator whose absence leads to persistent, low-grade elevation of ISG expression and concurrent, self-resolving mild autoinflammation. The limited breadth and low-grade persistence of ISGs expressed in ISG15 deficiency are sufficient to confer broad-spectrum antiviral resistance. Inspired by ISG15 deficiency, we have identified a nominal collection of 10 ISGs that recapitulate the broad antiviral potential of the IFN-I system. The expression of the 10 ISG collection in an IFN-I non-responsive cell line increased cellular resistance to Zika, Vesicular Stomatitis, Influenza A (IAV), and SARS-CoV-2 viruses. A deliverable prophylactic formulation of this syndicate of 10 ISGs significantly inhibited IAV PR8 replication in vivo in mice and protected hamsters against a lethal SARS-CoV-2 challenge, suggesting its potential as a broad-spectrum antiviral against many current and future emerging viral pathogens. One-Sentence Summary: Human inborn error of immunity-guided discovery and development of a broad-spectrum RNA antiviral therapy.

2.
Nat Rev Genet ; 25(3): 184-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37863939

ABSTRACT

Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.


Subject(s)
Rare Diseases , Humans , Penetrance
3.
Sci Adv ; 9(3): eade9459, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662852

ABSTRACT

Severe, early-onset photoreceptor (PR) degeneration associated with MERTK mutations is thought to result from failed phagocytosis by retinal pigment epithelium (RPE). Notwithstanding, the severity and onset of PR degeneration in mouse models of Mertk ablation are determined by the hypomorphic expression or the loss of the Mertk paralog Tyro3. Here, we find that loss of Mertk and reduced expression/loss of Tyro3 led to RPE inflammation even before eye-opening. Incipient RPE inflammation cascaded to involve microglia activation and PR degeneration with monocyte infiltration. Inhibition of RPE inflammation with the JAK1/2 inhibitor ruxolitinib mitigated PR degeneration in Mertk-/- mice. Neither inflammation nor severe, early-onset PR degeneration was observed in mice with defective phagocytosis alone. Thus, inflammation drives severe, early-onset PR degeneration-associated with Mertk loss of function.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Mice , Animals , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Retinal Pigment Epithelium/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Inflammation/genetics , Inflammation/metabolism
4.
Elife ; 112022 08 15.
Article in English | MEDLINE | ID: mdl-35969037

ABSTRACT

Knockout (KO) mouse models play critical roles in elucidating biological processes behind disease-associated or disease-resistant traits. As a presumed consequence of gene KO, mice display certain phenotypes. Based on insight into the molecular role of said gene in a biological process, it is inferred that the particular biological process causally underlies the trait. This approach has been crucial towards understanding the basis of pathological and/or advantageous traits associated with Mertk KO mice. Mertk KO mice suffer from severe, early-onset retinal degeneration. MERTK, expressed in retinal pigment epithelia, is a receptor tyrosine kinase with a critical role in phagocytosis of apoptotic cells or cellular debris. Therefore, early-onset, severe retinal degeneration was described to be a direct consequence of failed MERTK-mediated phagocytosis of photoreceptor outer segments by retinal pigment epithelia. Here, we report that the loss of Mertk alone is not sufficient for retinal degeneration. The widely used Mertk KO mouse carries multiple coincidental changes in its genome that affect the expression of a number of genes, including the Mertk paralog Tyro3. Retinal degeneration manifests only when the function of Tyro3 is concomitantly lost. Furthermore, Mertk KO mice display improved anti-tumor immunity. MERTK is expressed in macrophages. Therefore, enhanced anti-tumor immunity was inferred to result from the failure of macrophages to dispose of cancer cell corpses, resulting in a pro-inflammatory tumor microenvironment. The resistance against two syngeneic mouse tumor models observed in Mertk KO mice is not, however, phenocopied by the loss of Mertk alone. Neither Tyro3 nor macrophage phagocytosis by alternate genetic redundancy accounts for the absence of anti-tumor immunity. Collectively, our results indicate that context-dependent epistasis of independent modifier alleles determines Mertk KO traits.


Subject(s)
Retinal Degeneration , Alleles , Animals , Disease Models, Animal , Mice , Mice, Knockout , Phagocytosis/genetics , Phenotype , Proto-Oncogene Proteins/genetics , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Retinal Pigments , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism
5.
Immunol Rev ; 276(1): 165-177, 2017 03.
Article in English | MEDLINE | ID: mdl-28258690

ABSTRACT

Cancer immunotherapy utilizing T-cell checkpoint inhibitors has shown tremendous clinical success. Yet, this mode of treatment is effective in only a subset of patients. Unresponsive patients tend to have non-T-cell-inflamed tumors that lack markers associated with the activation of adaptive anti-tumor immune responses. Notably, elimination of cancer cells by T cells is critically dependent on the optimal activity of innate immune cells. Therefore, identifying new targets that regulate innate immune cell function and promote the engagement of adaptive tumoricidal responses is likely to lead to the development of improved therapies against cancer. Here, we review the TAM receptor tyrosine kinases-TYRO3, AXL, and MERTK-as an emerging class of innate immune checkpoints that participate in key steps of anti-tumoral immunity. Namely, TAM-mediated efferocytosis, negative regulation of dendritic cell activity, and dysregulated production of chemokines collectively favor the escape of malignant cells. Hence, disabling TAM signaling may promote engagement of adaptive immunity and complement T-cell checkpoint blockade.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunity, Innate , Immunotherapy/methods , Neoplasms/therapy , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Adaptive Immunity , Animals , Costimulatory and Inhibitory T-Cell Receptors/immunology , Drug Therapy, Combination , Humans , Neoplasms/immunology , Proto-Oncogene Proteins/immunology , Receptor Protein-Tyrosine Kinases/immunology , Signal Transduction , Tumor Escape , c-Mer Tyrosine Kinase , Axl Receptor Tyrosine Kinase
6.
J Invest Dermatol ; 133(12): 2741-2752, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23732752

ABSTRACT

Inflammation-associated pigmentation changes are extremely common, but the etiology underlying this clinical observation remains elusive. Particularly, it is unclear how the myriad of cytokines known to be involved in inflammatory skin processes affect epidermal melanocytes. We sought to determine how IL-17 and tumor necrosis factor (TNF) influence normal human melanocytes, as these two cytokines have been implicated in various skin diseases. IL-17 and TNF jointly stimulated broad inductions of cytokines, including melanoma mitogens CXCL1 and IL-8. Moreover, IL-17 and TNF synergistically inhibited pigmentation-related signaling and melanin production, and induced keratinocyte production of ß-defensin 3, an antagonist for melanocortin 1 receptor. When analyzing psoriasis lesions that are known to overexpress IL-17 and TNF, we observed an increase in melanocyte number and a simultaneous decrease in pigmentation signaling. Furthermore, therapeutic neutralization of TNF and IL-17 with mAbs resulted in a rapid recovery of pigment gene expression in psoriasis lesions. These results demonstrate that IL-17 and TNF can affect both the growth and pigment production of melanocytes, which may contribute to the pigmentation changes associated with psoriasis. These findings may allow the development of novel therapeutics for pigmentary disorders and bring new insights into the immune milieu surrounding melanocytes and related neoplasms.


Subject(s)
Gene Expression Regulation , Interleukin-17/physiology , Melanocytes/cytology , Psoriasis/metabolism , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL1/metabolism , Cytokines/metabolism , Epidermis/metabolism , Gene Expression Profiling , Humans , Inflammation , Interleukin-8/metabolism , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Signal Transduction , Skin/metabolism , beta-Defensins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...