Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbes Infect ; : 105379, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885758

ABSTRACT

Cholesterol reduction by intracellular protozoan parasite Leishmania donovani (L. donovani), causative agent of leishmaniasis, impairs antigen presentation, pro-inflammatory cytokine secretion and host-protective membrane-receptor signaling in macrophages. Here, we studied the miRNA mediated regulation of cholesterol biosynthetic genes to understand the possible mechanism of L. donovani-induced cholesterol reduction and therapeutic importance of miRNAs in leishmaniasis. System-scale genome-wide microtranscriptome screening was performed to identify the miRNAs involved in the regulation of expression of key cholesterol biosynthesis regulatory genes through miRanda3.0. 11 miRNAs out of 2823, showing complementarity with cholesterol biosynthetic genes were finally selected for expression analysis. These selected miRNAs were differentially regulated in THP-1 derived macrophages and in primary human macrophages by L. donovani. Correlation of expression and target validation through luciferase assay suggested two key miRNAs, hsa-miR-1303 and hsa-miR-874-3p regulating the key genes hmgcr and hmgcs1 respectively. Inhibition of hsa-mir-1303 and hsa-miR-874-3p augmented the expression of targets and reduced the parasitemia in macrophages. This study will also provide the platform for the development of miRNA-based therapy against leishmaniasis.

2.
Chem Biol Drug Des ; 99(6): 816-827, 2022 06.
Article in English | MEDLINE | ID: mdl-35147279

ABSTRACT

Leishmaniasis is considered a tropical neglected disease, which is caused by an intramacrophagic parasite, Leishmania. It is endemic in 89 different countries. Autophagy-related protein 8 (Ldatg8) is responsible for the transformation of parasites from promastigote to amastigote differentiation. Ldatg8 is one of the key drug targets of Leishmania donovani (L. donovani) responsible for the defense of parasites during stress conditions. Virtual screening of natural ligand library had been performed against Ldatg8 to identify novel and potent inhibitors. Molecular docking and molecular dynamics simulation studies showed that urolithin A stably blocked Ldatg8. Urolithins are combinations of coumarin and isocoumarin. Further, we evaluated the antileishmanial effects of urolithin A by antileishmanial assays. Urolithin A inhibited the growth and proliferation of L. donovani promastigotes with an IC50  value of 90.3 ± 6.014 µM. It also inhibited the intramacrophagic parasite significantly with an IC50  value of 78.67 ± 4.62 µM. It showed limited cytotoxicity to the human THP-1 differentiated macrophages with a CC50  value of 190.80 ± 16.89 µM. Further, we assayed reactive oxygen species (ROS) generation and annexin V/PI staining upon urolithin A treatment of parasites to have an insight into the mechanism of its action. It induced ROS significantly in a dose-dependent manner, which caused apoptosis partially in parasites. The potential inhibitors for Ldatg8, identified in this study, would provide the platform for the development of an effective and affordable antileishmanial drug.


Subject(s)
Antiprotozoal Agents , Autophagy-Related Protein 8 Family , Leishmania donovani , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Autophagy-Related Protein 8 Family/antagonists & inhibitors , Autophagy-Related Protein 8 Family/chemistry , Autophagy-Related Protein 8 Family/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Humans , Leishmania donovani/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/metabolism , Molecular Docking Simulation , Reactive Oxygen Species/metabolism
3.
Front Cell Infect Microbiol ; 11: 749420, 2021.
Article in English | MEDLINE | ID: mdl-34778106

ABSTRACT

Background: Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani (L. donovani), is the most severe form of leishmaniasis. It is largely responsible for significant morbidity and mortality in tropical and subtropical countries. Currently, available therapeutics have lots of limitations including high-cost, adverse side-effects, painful route of administration, less efficacy, and resistance. Therefore, it is time to search for cheap and effective antileishmanial agents. In the present work, we evaluated the antileishmanial potential of sesamol against promastigotes as well as intracellular amastigotes. Further, we tried to work out its mechanism of antileishmanial action on parasites through different assays. Methodology: In vitro and ex vivo antileishmanial assays were performed to evaluate the antileishmanial potential of sesamol on L. donovani. Cytotoxicity was determined by MTT assay on human THP-1-derived macrophages. Sesamol-induced morphological and ultrastructural changes were determined by electron microscopy. H2DCFDA staining, JC-1dye staining, and MitoSOX red staining were performed for reactive oxygen assay (ROS), mitochondrial membrane potential, and mitochondrial superoxide, respectively. Annexin V/PI staining for apoptosis, TUNEL assay, and DNA laddering for studying sesamol-induced DNA fragmentation were performed. Conclusions: Sesamol inhibited the growth and proliferation of L. donovani promastigotes in a dose-dependent manner. It also reduced the intracellular parasite load without causing significant toxicity on host-macrophages. Overall, it showed antileishmanial effects through induction of ROS, mitochondrial dysfunction, DNA fragmentation, cell cycle arrest, and apoptosis-like cell death to parasites. Our results suggested the possible use of sesamol for the treatment of leishmaniasis after further in vivo validations.


Subject(s)
Leishmania donovani , Animals , Apoptosis , Benzodioxoles/pharmacology , Humans , Mice , Mice, Inbred BALB C , Phenols/toxicity
4.
J Cell Biochem ; 2021 May 06.
Article in English | MEDLINE | ID: mdl-33955051

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by trypanosomatid parasite belonging to the genera Leishmania. Leishmaniasis is transmitted from one human to other through the bite of sandflies. It is endemic in around 98 countries including tropical and subtropical regions of Asia, Africa, Southern America, and the Mediterranean region. Sterol C-24 methyltransferase (LdSMT) of Leishmania donovani (L. donovani) mediates the transfer of CH3-group from S-adenosyl methionine to C-24 position of sterol side chain which makes the ergosterol different from cholesterol. Absence of ortholog in human made it potential druggable target. Here, we performed virtual screening of library of natural compounds against LdSMT to identify the potential inhibitor for it and to fight leishmaniasis. Gigantol, flavan-3-ol, and parthenolide showed the best binding affinity towards LdSMT. Further, based on absorption, distribution, metabolism, and excretion properties and biological activity prediction, gigantol showed the best lead-likeness and drug-likeness properties. Therefore, we further elucidated its antileishmanial properties. We found that gigantol inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes. Gigantol exerted its antileishmanial action through the induction of reactive oxygen species in dose-dependent manner. Our study, suggested the possible use of gigantol as antileishmanial drug after further validations to overcome leishmaniasis.

5.
ACS Omega ; 6(12): 8112-8118, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33817470

ABSTRACT

Hesperidin, a naturally occurring flavanoid, is present in citrus family of fruits. It was found effective against an array of pathogens including fungi, bacteria, viruses, and protozoa. Here, we evaluated its antileishmanial activity and possible mechanism of action through different in vitro and in silico experiments. It inhibited the growth and proliferation of the parasites significantly with a IC50 value of 1.019 ± 0.116 mM in vitro. It also reduced the growth of intra-macrophagic amastigotes with a IC50 value of 0.2858 ± 0.01398 mM. It induced the reactive oxygen species (ROS) in parasites in a dose-dependent manner. Through 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining, it was observed that around 96.9% parasites were ROS positive at 2.0 mM concentration of hesperidin. The ROS generated led to the apoptosis of parasites in a dose-dependent manner as observed by annexin/PI staining. Molecular docking with one of the very important and unique drug-targets of Leishmania donovani sterol C-24 reductase resulted in its significant inhibition. Here, we for the first time showed that hesperidin induced the antileishmanial response through the induction of apoptosis and inhibition of sterol C-24 reductase. Our study will be helpful in the development of a cost-effective antileishmanial lead with higher efficacy.

6.
J Cell Biochem ; 2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33817826

ABSTRACT

Leishmaniasis is a neglected tropical disease caused by the protozoan parasite Leishmania. It is endemic in more than 89 different countries worldwide. Sterol alpha-14 demethylase (LdSDM), a sterol biosynthetic pathway enzyme in Leishmania donovani, plays an essential role in parasite survival and proliferation. Here, we used a drug repurposing approach to virtually screen the library of the Food and Drug Administration (FDA)-approved drugs against LdSDM to identify the potential lead-drug against leishmaniasis. Zafirlukast and avodart showed the best binding with LdSDM. Zafirlukast was tested for in vitro antileishmanial assay, but no significant effect on L. donovani promastigotes was observed even at higher concentrations. On the other hand, avodart profoundly inhibited parasite growth at relatively lower concentrations. Further, avodart showed a significant decrease in the number of intra-macrophagic amastigotes. Avodart-induced reactive oxygen species (ROS) in the parasites in a dose-dependent manner. ROS induced by avodart led to the induction of apoptosis-like cell death in the parasites as observed through annexin V/PI staining. Here, for the first time, we reported the antileishmanial activity and its possible mechanism of action of FDA-approved drug, avodart, establishing a nice example of the drug-repurposing approach. Our study suggested the possible use of avodart as an effective antileishmanial agent after further detailed validations.

7.
Biosci Rep ; 41(1)2021 01 29.
Article in English | MEDLINE | ID: mdl-33367614

ABSTRACT

Cynaroside, a flavonoid, has been shown to have antibacterial, antifungal and anticancer activities. Here, we evaluated its antileishmanial properties and its mechanism of action through different in silico and in vitro assays. Cynaroside exhibited antileishmanial activity in time- and dose-dependent manner with 50% of inhibitory concentration (IC50) value of 49.49 ± 3.515 µM in vitro. It inhibited the growth of parasite significantly at only 20 µM concentration when used in combination with miltefosine, a standard drug which has very high toxicity. It also inhibited the intra-macrophagic parasite significantly at low doses when used in combination with miltefosine. It showed less toxicity than the existing antileishmanial drug, miltefosine at similar doses. Propidium iodide staining showed that cynaroside inhibited the parasites in G0/G1 phase of cell cycle. 2,7-dichloro dihydro fluorescein diacetate (H2DCFDA) staining showed cynaroside induced antileishmanial activity through reactive oxygen species (ROS) generation in parasites. Molecular-docking studies with key drug targets of Leishmania donovani showed significant inhibition. Out of these targets, cynaroside showed strongest affinity with uridine diphosphate (UDP)-galactopyranose mutase with -10.4 kcal/mol which was further validated by molecular dynamics (MD) simulation. The bioactivity, ADMET (absorption, distribution, metabolism, excretion and toxicity) properties, Organisation for Economic Co-operation and Development (OECD) chemical classification and toxicity risk prediction showed cynaroside as an enzyme inhibitor having sufficient solubility and non-toxic properties. In conclusion, cynaroside may be used alone or in combination with existing drug, miltefosine to control leishmaniasis with less cytotoxicity.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Glucosides/pharmacology , Intramolecular Transferases/antagonists & inhibitors , Leishmania donovani/drug effects , Luteolin/pharmacology , Reactive Oxygen Species/metabolism , Antiprotozoal Agents/chemistry , Enzyme Inhibitors/chemistry , Humans , Leishmania donovani/enzymology , Molecular Dynamics Simulation , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...