Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 297(4): 1141-1150, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35704118

ABSTRACT

In this study, we aimed to determine the genetic basis of a Turkish family related to hereditary spastic paraplegia (HSP) by exome sequencing. HSP is a progressive neurodegenerative disorder and displays genetic and clinical heterogeneity. The major symptoms are muscle weakness and spasticity, especially in the lower extremities. We studied seven affected and seven unaffected family members, as well as a clinically undetermined member, to identify the disease-causing gene. Exome sequencing was performed for four affected and two unaffected individuals. The variants were firstly filtered for HSP-associated genes, and we found a common variant in the ZFYVE27 gene, which has been previously implied for association with HSP. Due to the incompletely penetrant segregation pattern of the ZFYVE27 variant, revealed by Sanger sequencing, with the disease in this family, filtering was re-performed according to the mode of inheritance and allelic frequencies. The resulting 14 rare variants were further evaluated in terms of their cellular functions, and three candidate variants in ATAD3C, VPS16, and MYO1H genes were selected as possible causative variants, which were analyzed for their familial segregation. ATAD3C and VPS16 variants were eliminated due to incomplete penetrance. Eventually, the MYO1H variant NM_001101421.3:c.2972_2974del (p.Glu992del, rs372231088) was found as the possible disease-causing deletion for HSP in this family. This is the first study reporting the possible role of a MYO1H variant in HSP pathogenesis. Further studies on the cellular roles of Myo1h protein are needed to validate the causality of MYO1H gene at the onset of HSP.


Subject(s)
Myosin Type I , Spastic Paraplegia, Hereditary , Humans , Inheritance Patterns , Mutation , Myosin Type I/genetics , Pedigree , Proteins/genetics , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Vesicular Transport Proteins/genetics , Exome Sequencing
2.
Hum Mol Genet ; 31(11): 1844-1859, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34935948

ABSTRACT

Hereditary spastic paraplegia (HSP) is a disease in which dieback degeneration of corticospinal tracts, accompanied by axonal swellings, leads to gait deficiencies. SPG4-HSP, the most common form of the disease, results from mutations of human spastin gene (SPAST), which is the gene that encodes spastin, a microtubule-severing protein. The lack of a vertebrate model that recapitulates both the etiology and symptoms of SPG4-HSP has stymied the development of effective therapies for the disease. hSPAST-C448Y mice, which express human mutant spastin at the ROSA26 locus, display corticospinal dieback and gait deficiencies but not axonal swellings. On the other hand, mouse spastin gene (Spast)-knockout (KO) mice display axonal swellings but not corticospinal dieback or gait deficiencies. One possibility is that reduced spastin function, resulting in axonal swellings, is not the cause of the disease but exacerbates the toxic effects of the mutant protein. To explore this idea, Spast-KO and hSPAST-C448Y mice were crossbred, and the offspring were compared with the parental lines via histological and behavioral analyses. The crossbred animals displayed axonal swellings as well as earlier onset, worsened gait deficiencies and corticospinal dieback compared with the hSPAST-C448Y mouse. These results, together with observations on changes in histone deacetylases 6 and tubulin modifications in the axon, indicate that each of these three transgenic mouse lines is valuable for investigating a different component of the disease pathology. Moreover, the crossbred mice are the best vertebrate model to date for testing potential therapies for SPG4-HSP.


Subject(s)
Spastic Paraplegia, Hereditary , Spastin , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Gain of Function Mutation , Humans , Loss of Function Mutation , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Spastin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...