Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 11(1): 106, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26911570

ABSTRACT

Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 µM. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.

2.
Mater Sci Eng C Mater Biol Appl ; 42: 155-60, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25063105

ABSTRACT

Urea biosensor based on zeolite-adsorbed urease was applied for analysis of blood serum samples. It should be noted, that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, high reproducibility and repeatability (RSD=9% and 4%, respectively). The linear range of urea determination by using the biosensor was 0.003-0.75 mM, and the limit of urea detection was 3 µM. The method of standard addition was used for analysis of serum samples with 500-fold dilution. Total time of analysis was 10 min. Good reproducibility of urea determination in real samples was demonstrated (RSD=10%). Biosensor results were verified by using a common method of urea determination (diacetyl monoxime reaction). It was shown that by using this biosensor distinguishing healthy people from people with renal dysfunction becomes easier.


Subject(s)
Biosensing Techniques/instrumentation , Urea/blood , Urease/metabolism , Zeolites/chemistry , Biosensing Techniques/methods , Enzymes, Immobilized/metabolism , Humans , Limit of Detection , Linear Models , Reproducibility of Results , Urea/chemistry , Urea/metabolism
3.
Talanta ; 121: 18-23, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24607104

ABSTRACT

In this work a novel biosensor for arginine determination based on the urease inhibition effect has been proposed. Ion-selective field effect transistors were used as transducers. Urease immobilized in glutaraldehyde vapor served as a biorecognition element of the biosensor. Significant part of the work was aimed at proving the urease inhibition by arginine. Optimal concentration of urea for arginine determination was chosen. Detection limit for arginine was 0.05 mM. The biosensor selectivity towards different amino acids was studied. The results of quantitative determination of l-arginine in the real sample (a drinkable solution "Arginine Veyron") were in good agreement with the producer's data (a relative error was 5.2%). The biosensor showed a good reproducibility of arginine determination.


Subject(s)
Arginine/analysis , Biosensing Techniques , Urease/chemistry , Animals , Cattle , Limit of Detection
4.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1648-53, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-24364972

ABSTRACT

Effect of different modifications of zeolite Na(+)-BEA on working characteristics of urease-based conductometric biosensor was studied. As the biosensor sensitive elements were used bioselective membranes based on urease and various zeolites immobilised with bovine serum albumin on the surface of conductometric transducers. Influence of zeolites on sensitivity of urea biosensor was investigated as well as reproducibility of biosensor signal and reproducibility of activity of the bioselective element after different variants of urease immobilisation on the surface of conductometric transducer. The biosensors based on zeolites (NH4(+)-BEA 30 and H(+)-BEA 30) were shown to be the most sensitive. Concentration of these zeolites in the bioselective membrane was optimized. Use of zeolites modified with methyl viologen and silver was ascertained to be of no prospect for urea conductometric biosensors. It was demonstrated that characteristics of urea biosensors can be regulated, varying zeolites modifications and their concentrations in bioselective membranes.


Subject(s)
Zeolites/chemistry , Biosensing Techniques , Conductometry/methods , Paraquat/chemistry , Serum Albumin, Bovine/chemistry , Silver/chemistry , Urea/chemistry , Urease/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...