Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(29): 296002, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23803419

ABSTRACT

We have investigated quadrupole effects in tetragonal crystals of PrCu2Si2 and DyCu2Si2 by means of low-temperature ultrasonic measurements. The elastic constant C44 of PrCu2Si2 exhibits pronounced softening below 70 K down to a Néel temperature TN = 20 K, which is described in terms of a quadrupole susceptibility for a Γ5 doublet ground state and a Γ3 singlet first excited state located at 15.6 K in the crystalline electric field scheme. The C44 and C66 of DyCu2Si2 also show softening below 70 K down to TN1 = 9.7 K. A low-lying pseudo-sextet state consisting of three Kramers doublets of Γ6⊕2Γ7 brings about softening of C44 and C66 in DyCu2Si2.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Dysprosium/chemistry , Models, Chemical , Praseodymium/chemistry , Quantum Theory , Silicon/chemistry , Crystallization
2.
J Am Chem Soc ; 127(13): 4568-9, 2005 Apr 06.
Article in English | MEDLINE | ID: mdl-15796510

ABSTRACT

The tetranuclear complex [MnIII2NiII2Cl2(salpa)2] (salpa = N-(2-hydroxybenzyl)-3-amino-1-propanol) has a spin ground state of S = 6 and was confirmed to be an SMM based on a steplike feature of the magnetization hysteresis loop at 0.55 K.

3.
Phys Rev Lett ; 93(15): 156409, 2004 Oct 08.
Article in English | MEDLINE | ID: mdl-15524917

ABSTRACT

Magnetic phase diagrams for antiferroquadrupole (AFQ) phase II and antiferromagnetic (AFM) phase III in Ce0.50La0.50B6 with a Gamma(8) ground state have been investigated by ultrasonic measurements. The hybrid magnet (Gama) in the National Institute for Materials Science was employed for high-field measurements up to 30 T and a 3He-4He dilution refrigerator was used for low-temperature experiments down to 20 mK. The phase boundary from paramagnetic phase I to AFQ phase II under [001] magnetic fields closes at H(I-II) approximately 29 T, while the boundary is still open under fields along the [110] and [111] directions even up to 30 T. This anisotropic character of phase II in fields is consistent with the theoretical calculation based on the O(xy)-type AFQ ordering. We also found that AFM phase III reduces considerably in fields turning from the [001] to [110] and [111] directions.

SELECTION OF CITATIONS
SEARCH DETAIL
...