Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835946

ABSTRACT

Emissions of formaldehyde from wood-based panels, such as plywood, are gaining increased attention due to their carcinogenic impact on human health and detrimental effects on the environment. Plywood, which is primarily bound with a urea-formaldehyde adhesive, releases formaldehyde during hot pressing and gradually over time. Therefore, this study aims to analyze the impact of non-formaldehyde adhesive types on plywood performance. In addition, plywood performance was assessed by comparing Jabon wood (Anthocephalus cadamba Miq) veneer with other Indonesian wood veneers such as Mempisang (Alphonse spp.) and Mahogany (Swietenia mahagoni). To manufacture a three-layer plywood panel, a two-step manufacturing process was devised. The first step involved the use of Jabon veneers treated with citric acid (CA), maleic acid (MA), and molasses (MO), and another step was carried out for various wood veneers such as Jabon, Mempisang, and Mahogany using CA. The performance of plywood was examined using JAS 233:2003. The performance of plywood bonded with CA was better than that of plywood bonded with MA and MO. The Jabon wood veneer resulted in a lower density of plywood than other wood veneers. The water absorption, thickness swelling, modulus of elasticity, and tensile shear strength of plywood from Jabon wood veneer were similar to those of plywood from Mahogany wood veneer and lower than those of Mempisang wood veneer. The ester linkages of plywood bonded with CA were greater than those of plywood bonded with MA and MO because plywood bonded with CA has better performance than plywood bonded with MA and MO.

2.
Polymers (Basel) ; 14(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35631993

ABSTRACT

The sustainability, performance, and cost of production in the plywood industry depend on wood adhesives and the hot-pressing process. In this study, a cold-setting plywood adhesive was developed based on polyvinyl alcohol (PVOH), high-purity lignin, and hexamine. The influence of lignin content (10%, 15%, and 20%) and cold-pressing time (3, 6, 12, and 24 h) on cohesion, adhesion, and formaldehyde emission of plywood were investigated through physical, chemical, thermal, and mechanical analyses. The increased lignin addition level lowered the solids content, which resulted in reduced average viscosity of the adhesive. As a result, the cohesion strength of the adhesive formulation with 10% lignin addition was greater than those of 15% and 20% lignin content. Markedly, the adhesive formulation containing a 15% lignin addition level exhibited superior thermo-mechanical properties than the blends with 10% and 20% lignin content. This study showed that 10% and 15% lignin content in the adhesive resulted in better cohesion strength than that with 20% lignin content. However, statistical analysis revealed that the addition of 20% lignin in the adhesive and using a cold-pressing time of 24 h could produce plywood that was comparable to the control polyurethane resins, i.e., dry tensile shear strength (TSS) value of 0.95 MPa, modulus of rupture (MOR) ranging from 35.8 MPa, modulus of elasticity (MOE) values varying from 3980 MPa, and close-to-zero formaldehyde emission (FE) of 0.1 mg/L, which meets the strictest emission standards. This study demonstrated the feasibility of fabricating eco-friendly plywood bonded with PVOH-lignin-hexamine-based adhesive using cold pressing as an alternative to conventional plywood.

SELECTION OF CITATIONS
SEARCH DETAIL
...