Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(33): 22800-22813, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37520093

ABSTRACT

The orientations of crystal growth significantly affect the operating characteristics of elastic and inelastic deformation in semiconductor nanowires (NWs). This work uses molecular dynamics simulation to extensively investigate the orientation-dependent mechanical properties and fracture mechanisms of zinc blende ZnTe NWs. Three different crystal orientations, including [100], [110], and [111], coupled with temperatures (100 to 600 K) on the fracture stress and elastic modulus, are thoroughly studied. In comparison to the [110] and [100] orientations, the [111]-oriented ZnTe NW exhibits a high fracture stress. The percentage decrease in fracture strength exhibits a pronounced variation with increasing temperature, with the highest magnitude observed in the [100] direction and the lowest magnitude observed in the [110] direction. The elastic modulus dropped by the largest percentage in the [111] direction as compared to the [100] direction. Most notably, the [110]-directed ZnTe NW deforms unusually as the strain rate increases, making it more sensitive to strain rate than other orientations. The strong strain rate sensitivity results from the unusual short-range and long-range order crystals appearing due to dislocation slipping and partial twinning. Moreover, the {111} plane is the principal cleavage plane for all orientations, creating a dislocation slipping mechanism at room temperature. The {100} plane becomes active and acts as another fundamental cleavage plane at increasing temperatures. This in-depth analysis paves the way for advancing efficient and reliable ZnTe NWs-based nanodevices and nanomechanical systems.

2.
ACS Omega ; 7(17): 14678-14689, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35557666

ABSTRACT

In this study, we have thoroughly investigated the tensile mechanical behavior of monolayer XN (X = Ga, In) using molecular dynamics simulations. The effects of temperature (100 to 800 K) and point vacancies (PVs, 0.1 to 1%) on fracture stress, strain, and elastic modulus of GaN and InN are studied. The effects of edge chiralities on the tensile mechanical behavior of monolayer XN are also explored. We find that the elastic modulus, tensile strength, and fracture strain reduce with increasing temperature. The point defects cause the stress to be condensed in the vicinity of the vacancies, resulting in straightforward damage. On the other hand, all the mechanical behaviors such as fracture stress, elastic modulus, and fracture strain show substantial anisotropic nature in these materials. To explain the influence of temperature and PVs, the radial distribution function (RDF) at diverse temperatures and potential energy/atom at different vacancy concentrations are calculated. The intensity of the RDF peaks decreases with increasing temperature, and the presence of PVs leads to an increase in potential energy/atom. The current work provides an insight into adjusting the tensile mechanical behaviors by making vacancy defects in XN (X = Ga, In) and provides a guideline for the applications of XN (X = Ga, In) in flexible nanoelectronic and nanoelectromechanical devices.

3.
ACS Omega ; 7(5): 4525-4537, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35155944

ABSTRACT

Because of the rapid shrinking trend of integrated circuits, the performances of nanodevices and nanomechanical systems are greatly affected by the joule heating and mechanical failure dilemma. In addition, structural defects are inevitable during experimental synthesis of nanomaterials, which may alter their physical properties significantly. Investigation of the thermal transport and mechanical behavior of nanostructured materials with structural defects is thus a crucial requirement. In this study, the thermal conductivity (TC) and tensile mechanical behavior of monolayer honeycomb BeO are systematically explored using molecular dynamics simulations. An infinite length bulk TC of ∼277.77 ± 8.93 W/mK was found for the pristine monolayer BeO. However, the insertion of 1% single vacancy (SV) and double vacancy (DV) defects reduces the TC by ∼36.98 and ∼33.52%, respectively. On the other hand, the uniaxial tensile loading produces asymmetrical fracture stress, elastic modulus, and fracture strain behaviors in the armchair and zigzag directions. The elastic modulus was reduced by ∼4.7 and ∼6.6% for 1% SV defects along the armchair and zigzag directions, respectively, whereas the reduction was ∼2.7 and ∼ 5.1% for 1% DV defects. Moreover, because of the strong symmetry-breaking effect, both the TC and mechanical strength were significantly lower for the SV defects than those for the DV defects. The highly softening and decreasing trends of the phonon modes with increasing vacancy concentration and temperature, respectively, were noticed for both types of defects, resulting in a reduction of the TC of the defected structures. These findings will be helpful for the understanding of the heat transport and mechanical characteristics of monolayer BeO as well as provide guidance for the design and control of BeO-based nanoelectronic and nanoelectromechanical devices.

4.
ACS Omega ; 6(34): 21861-21871, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34497881

ABSTRACT

Recently, monolayer silicon germanide (SiGe), a newly explored buckled honeycomb configuration of silicon and germanium, is predicted to be a promising nanomaterial for next-generation nanoelectromechanical systems (NEMS) due to its intriguing electronic, optical, and piezoelectric properties. In the NEMS applications, the structure is subjected to uniaxial tensile mechanical loading, and the investigation of the mechanical behaviors is of fundamental importance to ensure structural stability. Here, we systematically explored the uniaxial tensile mechanical properties of 2D-SiGe through molecular dynamics simulations. The effects of temperature ranges from 300 to 1000 K and vacancy defects, for instance, point and bi vacancy, for both armchair and zigzag orientations of 2D-SiGe were investigated. In addition, the influence of system areas and strain rates on the stress-strain performance of 2D-SiGe has also been studied. With the increase in temperature and vacancy concentration, the mechanical properties of 2D-SiGe show decreasing behavior for both orientations and the armchair chirality shows superior mechanical strength to the zigzag direction due to its bonding characteristics. A phase transformation-induced second linearly elastic region was observed at large deformation strain, leading to an anomalous stress-strain behavior in the zigzag direction. At 300 K temperature, we obtained a fracture stress of ∼94.83 GPa and an elastic modulus of ∼388.7 GPa along the armchair direction, which are about ∼3.17 and ∼2.83% higher than the zigzag-oriented fracture strength and elastic modulus. Moreover, because of the strong regularity interruption effect, the point vacancy shows the largest decrease in fracture strength, elastic modulus, and fracture strain compared to the bi vacancy defects for both armchair and zigzag orientations. Area and strain rate investigations reveal that 2D-SiGe is less susceptible to the system area and strain rate. These findings provide a deep insight into controlling the tensile mechanical behavior of 2D-SiGe for its applications in next-generation NEMS and nanodevices.

SELECTION OF CITATIONS
SEARCH DETAIL
...