Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456501

ABSTRACT

Efficient clearance and degradation of apoptotic cardiomyocytes by macrophages (collectively termed efferocytosis) is critical for inflammation resolution and restoration of cardiac function after myocardial ischemia/reperfusion (I/R). Here, we define secreted and transmembrane protein 1a (Sectm1a), a cardiac macrophage-enriched gene, as a modulator of macrophage efferocytosis in I/R-injured hearts. Upon myocardial I/R, Sectm1a-KO mice exhibited impaired macrophage efferocytosis, leading to massive accumulation of apoptotic cardiomyocytes, cardiac inflammation, fibrosis, and consequently, exaggerated cardiac dysfunction. By contrast, therapeutic administration of recombinant SECTM1A protein significantly enhanced macrophage efferocytosis and improved cardiac function. Mechanistically, SECTM1A could elicit autocrine effects on the activation of glucocorticoid-induced TNF receptor (GITR) at the surface of macrophages, leading to the upregulation of liver X receptor α (LXRα) and its downstream efferocytosis-related genes and lysosomal enzyme genes. Our study suggests that Sectm1a-mediated activation of the Gitr/LXRα axis could be a promising approach to enhance macrophage efferocytosis for the treatment of myocardial I/R injury.


Subject(s)
Myocardial Reperfusion Injury , Phagocytosis , Mice , Animals , Efferocytosis , Apoptosis , Macrophages/metabolism , Inflammation/metabolism , Membrane Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Reperfusion
2.
Shock ; 61(2): 175-188, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37878470

ABSTRACT

ABSTRACT: Extracellular vesicles (EVs) are a new revelation in cross-kingdom communication, with increasing evidence showing the diverse roles of bacterial EVs (BEVs) in mammalian cells and host-microbe interactions. Bacterial EVs include outer membrane vesicles released by gram-negative bacteria and membrane vesicles generated from gram-positive bacteria. Recently, BEVs have drawn attention for their potential as biomarkers and therapeutic tools because they are nano-sized and can deliver bacterial cargo into host cells. Importantly, exposure to BEVs significantly affects various physiological and pathological responses in mammalian cells. Herein, we provide a comprehensive overview of the various effects of BEVs on host cells (i.e., immune cells, endothelial cells, and epithelial cells) and inflammatory/infectious diseases. First, the biogenesis and purification methods of BEVs are summarized. Next, the mechanisms and pathways identified by BEVs that stimulate either proinflammatory or anti-inflammatory responses are highlighted. In addition, we discuss the mechanisms by which BEVs regulate host-microbe interactions and their effects on the immune system. Finally, this review focuses on the contribution of BEVs to the pathogenesis of sepsis/septic shock and their therapeutic potential for the treatment of sepsis.


Subject(s)
Extracellular Vesicles , Sepsis , Animals , Host Microbial Interactions , Endothelial Cells , Bacteria/metabolism , Extracellular Vesicles/metabolism , Sepsis/metabolism , Mammals
3.
Pharmacol Ther ; 244: 108385, 2023 04.
Article in English | MEDLINE | ID: mdl-36966973

ABSTRACT

The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel ß-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.


Subject(s)
Cardiovascular Diseases , Humans , Lipocalins/chemistry , Lipocalins/metabolism , Amino Acid Sequence , Receptors, Cell Surface/metabolism , Ligands , Retinol-Binding Proteins, Plasma/metabolism
4.
J Clin Med ; 11(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36362495

ABSTRACT

An ectopic ureter is a ureter that does not correctly connect to the trigone of the bladder and drains outside of the bladder. Here, we presented five cases of ectopic ureter opening into the vagina, whose clinical symptoms and malformations were rarely described in previous case reports. All five patients were hospitalized with complaints of gynecologic disease. Three of the five cases did not present the typical symptoms of urinary incontinence. Three of these cases showed congenital malformations of the female genital tract. Four cases were diagnosed in adulthood. All patients were analyzed using various imaging examinations. This study suggests that the ectopic ureter should be considered in the differential diagnosis of a pelvic mass in a patient with urinary and reproductive system abnormalities. It is essential to comprehensively evaluate complex malformations of the genitourinary system with multiple imaging tests.

5.
J Cell Mol Med ; 25(12): 5404-5416, 2021 06.
Article in English | MEDLINE | ID: mdl-33955677

ABSTRACT

Gestational and postpartum high-fat diets (HFDs) have been implicated as causes of obesity in offspring in later life. The present study aimed to investigate the effects of gestational and/or postpartum HFD on obesity in offspring. We established a mouse model of HFD exposure that included gestation, lactation and post-weaning periods. We found that gestation was the most sensitive period, as the administration of a HFD impaired lipid metabolism, especially fatty acid oxidation in both foetal and adult mice, and caused obesity in offspring. Mechanistically, the DNA hypermethylation level of the nuclear receptor, peroxisome proliferator-activated receptor-α (Pparα), and the decreased mRNA levels of ten-eleven translocation 1 (Tet1) and/or ten-eleven translocation 2 (Tet2) were detected in the livers of foetal and adult offspring from mothers given a HFD during gestation, which was also associated with low Pparα expression in hepatic cells. We speculated that the hypermethylation of Pparα resulted from the decreased Tet1/2 expression in mothers given a HFD during gestation, thereby causing lipid metabolism disorders and obesity. In conclusion, this study demonstrates that a HFD during gestation exerts long-term effects on the health of offspring via the DNA demethylation of Pparα, thereby highlighting the importance of the gestational period in regulating epigenetic mechanisms involved in metabolism.


Subject(s)
Demethylation , Diet, High-Fat/adverse effects , Obesity/pathology , PPAR alpha/metabolism , Prenatal Exposure Delayed Effects/pathology , Animals , Female , Gestational Age , Lipid Metabolism , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , PPAR alpha/genetics , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/metabolism
6.
J Mol Endocrinol ; 64(1): 43-52, 2020 01.
Article in English | MEDLINE | ID: mdl-31786540

ABSTRACT

Receptive endometrium is a prerequisite for successful embryo implantation, and it follows that poor endometrial receptivity is a leading cause of implantation failure. miRNAs play important roles as epigenetic regulators of endometrial receptivity and embryo implantation through post-transcriptional modifications. However, the mechanisms of action of many miRNAs are poorly understood. In this study, we investigated the role of the miR-183 family, comprising three miRNAs (miR-183-5p, miR-182-5p, and miR-96-5p) in endometrial receptivity and embryo implantation. The miR-183 family shows estrogen-dependent upregulation in endometrial Ishikawa (IK) cells. The miR-183 family also has a positive role in migration and proliferation of IK cells. Furthermore, JAr spheroid attachment experiments show that attachment rates were significantly decreased after treatment of IK cells with inhibitors for miR-183-5p and miR-182-5p and increased after treatment with miR-183-5p-mimic and miR-96-5p-mimic, respectively. The downstream analysis shows that catenin alpha 2 (CTNNA2) is a potential target gene for miR-183-5p, and this was confirmed in luciferase reporter assays. An in vivo mouse pregnancy model shows that inhibition of miR-183-5p significantly decreases embryo implantation rates and increases CTNNA2 expression. Downregulation of CTNNA2 in endometrial cells by miR-183-5p may be significant in mediating estrogenic effects on endometrial receptivity. In conclusion, miR-183-5p and the CTNNA2 gene may be potential biomarkers for endometrial receptivity and may be useful diagnostic and therapeutic targets for successful embryo implantation.


Subject(s)
Embryo Implantation/genetics , MicroRNAs/genetics , Uterus/physiology , Animals , Biomarkers/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Down-Regulation/genetics , Embryo Implantation/physiology , Endometrium/physiology , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred ICR , Pregnancy , alpha Catenin/genetics
7.
Epigenetics Chromatin ; 11(1): 20, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29801514

ABSTRACT

BACKGROUND: The existing reports about intergenerational or transgenerational effects of intrauterine hyperglycemia have included both intrauterine and postnatal metabolic exposure factors, while the impact of intrauterine hyperglycemia per se has not been assessed alone. A number of studies suggest DNA methylation reprogramming of gametes plays a crucial role in the metabolic inheritance, but it is unclear when and how DNA methylation patterns are altered when exposed to intrauterine hyperglycemia. In this study, we selected nondiabetic F1- and F2-gestational diabetes mellitus (GDM) male mice as founders to examine metabolic changes in the next generation and performed methylome sequencing of day 13.5 primordial germ cells (PGCs) from F1-GDM to explore the underlying epigenetic mechanism. RESULTS: We found that intrauterine hyperglycemia exposure resulted in obesity, insulin resistance, and/or glucose intolerance in F2 male mice, but no metabolic changes in F3 male mice at 8 weeks. Using reduced representation bisulfite sequencing, we found DNA methylome of day 13.5 PGCs from F1-GDM fetuses revealed differently methylated genes enriched in obesity and diabetes. Methylation validation of the insulin resistance and fat accumulation gene Fyn showed a consistent hypomethylation status in F1 PGCs, F1 fetal testes, sperm from F1/C-GDM mice, and somatic cells from F2-GDM male mice. In contrast, no methylation alteration was observed in F2-GDM male germ cells and F3-GDM somatic cells. CONCLUSION: We provide evidence that intrauterine hyperglycemia exposure per se contributes to intergenerational metabolic changes in the F2 but not F3 generation. And the aberrant DNA methylation reprogramming occurs as early as day 13.5 in PGCs of the F1 generation. Our findings suggest that intrauterine exposure alone is sufficient to cause the epigenetic inheritance in F2 offspring, and the epigenetic memory carried by DNA methylation pattern could be erased by the second wave of methylation reprogramming in F2 PGCs during fetal development.


Subject(s)
DNA Methylation , Diabetes, Gestational/genetics , Gene Regulatory Networks , Glucose Intolerance/genetics , Obesity/genetics , Prenatal Exposure Delayed Effects/genetics , Animals , Cells, Cultured , Disease Models, Animal , Epigenesis, Genetic , Female , Founder Effect , Genetic Predisposition to Disease , Germ Cells/cytology , High-Throughput Nucleotide Sequencing , Humans , Insulin Resistance , Male , Mice , Pregnancy , Proto-Oncogene Proteins c-fyn/genetics , Sequence Analysis, DNA
8.
Future Microbiol ; 10(11): 1881-95, 2015.
Article in English | MEDLINE | ID: mdl-26515509

ABSTRACT

Probiotics are viable microorganisms with the capacity to alter the gastrointestinal microbiota of the host. The recent scientific advancements and development of probiotic formulations have rekindled the importance of these clinical interpretations, underlining the starring role of the gut flora in host metabolism, defense and immune regulation. Despite encouraging preliminary results from randomized clinical trials of probiotics for various clinical conditions including irritable bowel syndrome, necrotizing enterocolitis, gastroenteritis, antibiotic-associated diarrhea, infantile colic, and improvement of digestion and immune function, further evidence is needed to determine the reproducibility of the findings and elucidate the underlying mechanisms. In this review, we have considered the postnatal development of gut flora and appraised the role of probiotics in health and disease condition among infants.


Subject(s)
Biological Therapy/methods , Gastrointestinal Diseases/therapy , Probiotics/administration & dosage , Administration, Oral , Clinical Trials as Topic , Gastrointestinal Microbiome , Humans , Infant , Infant, Newborn , Microbiota , Reproducibility of Results , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...