Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 24(1): 104, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468244

ABSTRACT

Breast cancer is significantly influenced by endoplasmic reticulum (ER) stress, impacting both its initiation and progression. When cells experience an accumulation of misfolded or unfolded proteins, they activate the unfolded protein response (UPR) to restore cellular balance. In breast cancer, the UPR is frequently triggered due to challenging conditions within tumors. The UPR has a dual impact on breast cancer. On one hand, it can contribute to tumor growth by enhancing cell survival and resistance to programmed cell death in unfavorable environments. On the other hand, prolonged and severe ER stress can trigger cell death mechanisms, limiting tumor progression. Furthermore, ER stress has been linked to the regulation of non-coding RNAs (ncRNAs) in breast cancer cells. These ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play essential roles in cancer development by influencing gene expression and cellular processes. An improved understanding of how ER stress and ncRNAs interact in breast cancer can potentially lead to new treatment approaches. Modifying specific ncRNAs involved in the ER stress response might interfere with cancer cell survival and induce cell death. Additionally, focusing on UPR-associated proteins that interact with ncRNAs could offer novel therapeutic possibilities. Therefore, this review provides a concise overview of the interconnection between ER stress and ncRNAs in breast cancer, elucidating the nuanced effects of the UPR on cell fate and emphasizing the regulatory roles of ncRNAs in breast cancer progression.

2.
Cell Commun Signal ; 20(1): 51, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414084

ABSTRACT

Extracellular vehicles (EVs) are a heterogeneous group of cell and membranous particles originating from different cell compartments. EVs participate in many essential physiological functions and mediate fetal-maternal communications. Exosomes are the smallest unit of EVs, which are delivered to the extracellular space. Exosomes can be released by the umbilical cord, placenta, amniotic fluid, and amniotic membranes and are involved in angiogenesis, endothelial cell migration, and embryo implantation. Also, various diseases such as gestational hypertension, gestational diabetes mellitus (GDM), preterm birth, and fetal growth restriction can be related to the content of placental exosomes during pregnancy. Due to exosomes' ability to transport signaling molecules and their effect on sperm function, they can also play a role in male and female infertility. In the new insight, exosomal miRNA can diagnose and treat infertilities disorders. In this review, we focused on the functions of exosomes during pregnancy. Video abstract.


Subject(s)
Exosomes , Premature Birth , Exosomes/metabolism , Female , Humans , Infant, Newborn , Male , Placenta/metabolism , Pregnancy , Premature Birth/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...