Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 352: 141223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228191

ABSTRACT

This study aims to provide a comprehensive evaluation of the photocatalytic properties and performance of the Cu-Ti-O heterojunction sonochemically embedded in the mesoporous silica matrix. Various characterization analyses and adsorption/photodegradation experiments were performed to assess the potential of the sample for tetracycline (TC) removal. The characterization results indicated that sonication contributes to better dispersion of Ti-Cu-O species, resulting in more uniform particle sizes, stronger semiconductors-silica interaction, and less agglomeration. Furthermore, sonication significantly affected the optical nanocomposite features, leading to an improvement in charge carrier separation and a decrease in the band gap of Ti-Cu-Si (S) by approximately 2.6 eV. Based on the textural results, the ultrasound microjets increased the surface area and pore volume, which facilitate mass transfer and provide suitable adsorption sites for TC molecules. Accordingly, Cu-Ti-Si (S) demonstrated higher adsorption capacity (0.051 g TC/g adsorbent) and eliminated TC significantly faster (0.0054 L.mg-1.min-1) than a non-sonicated sample during 120 min of irradiation, resulting in 2.84 times improvement in the constant rate. In addition, experimental results were accurately modeled using a central composite design in combination with response surface methodology (RSM) and artificial neural networks (ANN) to predict and optimize TC photodegradation. Both RSM and ANN models revealed excellent predictability for TC degradation efficiency, with R2 = 99.47 and 99.71%, respectively. At optimal operational conditions (CTC = 20 ppm, photocatalyst dosage = 1.15 g.L-1, pH = 9, and irradiation time = 100 min), more than 95% and 87% of TC were degraded within the UV (375 W) and simulated solar light (400 W) irradiation periods, respectively. It was observed that the Cu-Ti-Si (S) nanocomposite maintained remarkable stability after four cycles with only a negligible 3% loss of activity, owing to the superior interaction between the bimetallic heterojunction and the silica matrix.


Subject(s)
Silicon Dioxide , Titanium , Photolysis , Silicon Dioxide/chemistry , Adsorption , Titanium/chemistry , Tetracycline/chemistry , Anti-Bacterial Agents , Neural Networks, Computer
2.
Ultrason Sonochem ; 37: 490-501, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28427661

ABSTRACT

Hydrogen evolution via water splitting was investigated over the sonochemically synthesized TiO2-clinoptilolite photocomposites. To this aim, a series of photocatalysts containing 10wt% titania were prepared by impregnation and solid state dispersion (SSD) methods in the presence and absence of ultrasound irradiation. The samples were characterized by XRD, FESEM, EDX, BET, FTIR, PL and UV-vis techniques and tested for the water splitting. The characterization results indicated that ultrasound irradiation endowed the photocatalysts with uniform morphology, higher surface area and more homogenous dispersion. In addition, the analyses also exhibited less population of particle aggregates, a strong titania-support interaction and lower electron-hole pairs recombination rate. These features were more prominent when ultrasound was employed during SSD method. The TiO2/Clinoptilolite photocatalyst prepared by the ultrasound assisted SSD method (TiO2/CLT(US)), had more uniform active sites dispersion, high separation efficiency of electron-hole pairs and as a consequence, high surface density of active sites. The highest photocatalytic activity, 569.88 [Formula: see text] , was obtained for the TiO2/CLT(US) sample which was about 8 times more than that of P-25 as a reference sample. Furthermore, the TiO2/CLT(US) photocomposite as optimal photocatalyst showed sufficient reusability, making it a good choice for photocatalytic water splitting applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...