Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 307: 119587, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35680063

ABSTRACT

Decision Support System (DSS) is a novel approach for smart, sustainable controlling of environmental phenomena and purification processes. Toluene is one of the most widely used petroleum products, which adversely impacts on human health. In this study, Fusarium Solani fungi are utilized as the engine of the toluene bioremediation procedure for the monitoring part of DSS. Experiments are optimized by Central Composite Design (CCD) - Response Surface Methodology (RSM), and the behavior of the mentioned fungi is estimated by M5 Pruned model tree (M5P), Gaussian Processes (GP), and Sequential Minimal Optimization (SMOreg) algorithms as the prediction section of DSS. Finally, the control stage of DSS is provided by integrated Petri Net modeling and Failure Modes and Effects Analysis (FMEA). The findings showed that Aeration Intensity (AI) and Fungi load/Biological Waste (F/BW) are the most influential mechanical and biological factors, with P-value of 0.0001 and 0.0003, respectively. Likewise, the optimal values of main mechanical parameters include AI, and the space between pipes (S) are equal to 13.76 m3/h and 15.99 cm, respectively. Also, the optimum conditions of biological features containing F/BW and pH are 0.001 mg/g and 7.56. In accordance with the kinetic study, bioremediation of toluene by Fusarium Solani is done based on a first-order reaction with a 0.034 s-1 kinetic coefficient. Finally, the machine learning practices showed that the GP (R2 = 0.98) and M5P (R2 = 0.94) have the most precision for predicting Removal Percentage (RP) for mechanical and biological factors, respectively. At the end of the present research, it is found that by controlling seven possible risk factors in bioremediation operation through the FMEA- Petri Net technique, efficiency of the process can be adjusted to optimum value.


Subject(s)
Soil , Toluene , Biodegradation, Environmental , Biological Factors , Fusarium , Humans , Sustainable Development , United Nations
2.
J Environ Manage ; 312: 114939, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35338986

ABSTRACT

A Decision Support System (DSS) is a highly efficient concept for managing complex objects in nature or human-made phenomena. The main purpose of the present study is related to designing and implementation of real-time monitoring, prediction, and control system for flood disaster management as a DSS. Likewise, the problem of statement in the research is correlated to implementation of a system for different climates of Iran as a unique flood control system. For the first time, this study coupled hydrological data mining, Machine Learning (ML), and Multi-Criteria Decision Making (MCDM) as smart alarm and prevention systems. Likewise, it created the platform for conditional management of floods in Iran's different clusters of climates. According to the KMeans clustering system, which determines homogeneity of the hydrology of a specific region, Iran's rainfall is heterogeneous with 0.61 score, which is approved high efficiency of clustering in a vast country such as Iran with four seasons and different climates. In contrast, the relation of rainfall and flood disaster is evaluated by Nearest Neighbors Classification (NNC), Stochastic Gradient Descent (SGD), Gaussian Process Classifier (GPC), and Neural Network (NN) algorithms which have an acceptable correlation coefficient with a mean of 0.7. The machine learning outputs demonstrated that based on valid data existence problems in developing countries, just with verified precipitation records, the flood disaster can be estimated with high efficiency. In the following, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method as a Game Theory (GT) technique ranked the preventive flood damages strategies through three social (Se 1), environmental (Se 2), and economic (Se 3) crises scenarios. The solutions of flood disaster management are collected from literature review, and the opinion approves them of 9 senior experts who are retired from a high level of water resource management positions of Iran. The outcomes of the TOPSIS method proved that National announcement for public-institutional participation for rapid response and funding (G1-2), Establishment of delay structures to increase flood focus time to give the animals in the ecosystem the opportunity to escape to the upstream points and to preserve the habitat (G 2-8), and Granting free national financial resources by government agencies in order to rebuild sensitive infrastructure such as railways, hospitals, schools, etc. to the provincial treasury (G3-10) are selected as the best solution of flood management in Social, Environmental, and Economic crises, respectively. Finally, the collected data are categorized in Social, Environmental, and Economic aspects as three dimensions of Sustainable Development Goals (SDGs) and ranked based on the opinion of 32 experts in the five provinces of present case studies.


Subject(s)
Disasters , Floods , Developing Countries , Disasters/prevention & control , Ecosystem , Hydrology
SELECTION OF CITATIONS
SEARCH DETAIL
...