Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 24(7): 1087-1097, 2023 07.
Article in English | MEDLINE | ID: mdl-37264229

ABSTRACT

Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.


Subject(s)
Killer Cells, Natural , Protein Sorting Signals , Humans , Histocompatibility Antigens Class I , HLA Antigens/metabolism , Histocompatibility Antigens Class II/metabolism , NK Cell Lectin-Like Receptor Subfamily D/genetics , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Lectins, C-Type/metabolism , Receptors, Natural Killer Cell/metabolism , HLA-E Antigens
2.
Genes Immun ; 22(7-8): 327-334, 2021 12.
Article in English | MEDLINE | ID: mdl-34864821

ABSTRACT

Human immunoglobulin G (IgG) molecules, IgG1, IgG2 and IgG3, exhibit substantial inter-individual variation in their constant heavy chain regions, as discovered by serological methods. This polymorphism is encoded by the IGHG1, IGHG2, and IGHG3 genes and may influence antibody function. We sequenced the coding fragments of these genes in 95 European Americans, 94 African Americans, and 94 Black South Africans. Striking differences were observed between the population groups, including extremely low amino acid sequence variation in IGHG1 among South Africans, and higher IGHG2 and IGHG3 diversity in individuals of African descent compared to individuals of European descent. Molecular definition of the loci illustrates a greater level of allelic polymorphism than previously described, including the presence of common IGHG2 and IGHG3 variants that were indistinguishable serologically. Comparison of our data with the 1000 Genome Project sequences indicates overall agreement between the datasets, although some inaccuracies in the 1000 Genomes Project are likely. These data represent the most comprehensive analysis of IGHG polymorphisms across major populations, which can now be applied to deciphering their functional impact.


Subject(s)
Immunoglobulin G , Immunoglobulin Heavy Chains , Alleles , Genes, Immunoglobulin , Humans , Immunoglobulin G/genetics , Immunoglobulin Heavy Chains/genetics , Polymorphism, Genetic
3.
Proc Natl Acad Sci U S A ; 117(45): 28232-28238, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33097667

ABSTRACT

Human leukocyte antigen (HLA) class I allotypes vary in their ability to present peptides in the absence of tapasin, an essential component of the peptide loading complex. We quantified tapasin dependence of all allotypes that are common in European and African Americans (n = 97), which revealed a broad continuum of values. Ex vivo examination of cytotoxic T cell responses to the entire HIV-1 proteome from infected subjects indicates that tapasin-dependent allotypes present a more limited set of distinct peptides than do tapasin-independent allotypes, data supported by computational predictions. This suggests that variation in tapasin dependence may impact the strength of the immune responses by altering peptide repertoire size. In support of this model, we observed that individuals carrying HLA class I genotypes characterized by greater tapasin independence progress more slowly to AIDS and maintain lower viral loads, presumably due to increased breadth of peptide presentation. Thus, tapasin dependence level, like HLA zygosity, may serve as a means to restrict or expand breadth of the HLA-I peptide repertoire across humans, ultimately influencing immune responses to pathogens and vaccines.


Subject(s)
Antigen Presentation/genetics , HIV Infections , Histocompatibility Antigens Class I , Membrane Transport Proteins , HIV Infections/genetics , HIV Infections/immunology , HIV-1/immunology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Human Immunodeficiency Virus Proteins/immunology , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/immunology , Membrane Transport Proteins/metabolism , Peptides/immunology , Peptides/metabolism , T-Lymphocytes, Cytotoxic/immunology , Viral Load/genetics , Viral Load/immunology
4.
Cell ; 162(4): 738-50, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26276630

ABSTRACT

The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples. We show that whereas the 2013-2015 EVD epidemic is fueled by human-to-human transmissions, LASV infections mainly result from reservoir-to-human infections. We elucidated the spread of LASV across West Africa and show that this migration was accompanied by changes in LASV genome abundance, fatality rates, codon adaptation, and translational efficiency. By investigating intrahost evolution, we found that mutations accumulate in epitopes of viral surface proteins, suggesting selection for immune escape. This catalog will serve as a foundation for the development of vaccines and diagnostics. VIDEO ABSTRACT.


Subject(s)
Genome, Viral , Lassa Fever/virology , Lassa virus/genetics , RNA, Viral/genetics , Africa, Western/epidemiology , Animals , Biological Evolution , Disease Reservoirs , Ebolavirus/genetics , Genetic Variation , Glycoproteins/genetics , Hemorrhagic Fever, Ebola/virology , Humans , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa virus/classification , Lassa virus/physiology , Murinae/genetics , Mutation , Nigeria/epidemiology , Viral Proteins/genetics , Zoonoses/epidemiology , Zoonoses/virology
5.
J Infect Dis ; 212 Suppl 2: S359-67, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26232440

ABSTRACT

BACKGROUND: Throughout the 2014-2015 Ebola outbreak in West Africa, major gaps were exposed in the availability of validated rapid diagnostic platforms, protective vaccines, and effective therapeutic agents. These gaps potentiated the development of prototype rapid lateral flow immunodiagnostic (LFI) assays that are true point-of-contact platforms, for the detection of active Ebola infections in small blood samples. METHODS: Recombinant Ebola and Marburg virus matrix VP40 and glycoprotein (GP) antigens were used to derive a panel of monoclonal and polyclonal antibodies. Antibodies were tested using a multivariate approach to identify antibody-antigen combinations suitable for enzyme-linked immunosorbent assay (ELISA) and LFI assay development. RESULTS: Polyclonal antibodies generated in goats were superior reagents for capture and detection of recombinant VP40 in test sample matrices. These antibodies were optimized for use in antigen-capture ELISA and LFI assay platforms. Prototype immunoglobulin M (IgM)/immunoglobulin G (IgG) ELISAs were similarly developed that specifically detect Ebola virus-specific antibodies in the serum of experimentally infected nonhuman primates and in blood samples obtained from patients with Ebola from Sierra Leone. CONCLUSIONS: The prototype recombinant Ebola LFI assays developed in these studies have sensitivities that are useful for clinical diagnosis of acute ebolavirus infections. The antigen-capture and IgM/IgG ELISAs provide additional confirmatory assay platforms for detecting VP40 and other ebolavirus-specific immunoglobulins.


Subject(s)
Antigens, Viral/immunology , Filoviridae/immunology , Immunoassay/methods , Africa, Western , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cross Reactions/immunology , Ebolavirus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Hemorrhagic Fever, Ebola/blood , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/virology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Marburg Virus Disease/blood , Marburg Virus Disease/immunology , Marburg Virus Disease/virology , Marburgvirus/immunology , Sierra Leone
SELECTION OF CITATIONS
SEARCH DETAIL
...