Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectromagnetics ; 45(5): 209-217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38369591

ABSTRACT

In recent years exposure of living beings to radiofrequency radiation (RFR) emitted from wireless equipment has increased. In this study, we investigated the effects of 3.5-GHz RFR on hormones that regulate energy metabolism in the body. Twenty-eight rats were divided into four groups: healthy sham (n = 7), healthy RFR (n = 7), diabetic sham (n = 7), and diabetic RFR (n = 7). Over a month, each group spent 2 h/day in a Plexiglas carousel. The rats in the experimental group were exposed to RFR, but the sham groups were not. At the end of the experiment, blood and adipose tissues were collected from euthanized rats. Total antioxidant, total oxidant, hydrogen peroxide, ghrelin, nesfatin-1, and irisin were determined. Insulin expression in pancreatic tissues was examined by immunohistochemical analysis. Whole body specific absorption rate was 37 mW/kg. For the parameters analyzed in blood and fat, the estimated effect size varied within the ranges of 0.215-0.929 and 0.503-0.839, respectively. The blood and adipose nesfatin-1 (p = 0.002), blood and pancreatic insulin are decreased, (p = 0.001), gherelin (p = 0.020), irisin (p = 0.020), and blood glucose (p = 0.040) are increased in healthy and diabetic rats exposed to RFR. While nesfatin-1 are negatively correlated with oxidative stress, hyperglycemia and insulin, ghrelin and irisin are positively correlated with oxidative stress and hyperglycemia. Thus, RFR may have deleterious effects on energy metabolism, particularly in the presence of diabetes.


Subject(s)
Adipose Tissue , Fibronectins , Ghrelin , Insulin , Nucleobindins , Radio Waves , Animals , Radio Waves/adverse effects , Ghrelin/blood , Ghrelin/metabolism , Nucleobindins/metabolism , Male , Fibronectins/metabolism , Fibronectins/blood , Rats , Adipose Tissue/metabolism , Adipose Tissue/radiation effects , Insulin/metabolism , Insulin/blood , Antioxidants/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Energy Metabolism/radiation effects , Calcium-Binding Proteins/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress/radiation effects , Rats, Wistar
2.
Bioelectromagnetics ; 42(1): 76-85, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33368426

ABSTRACT

The continuously increasing usage of cell phones has raised concerns about the adverse effects of microwave radiation (MWR) emitted by cell phones on health. Several in vitro and in vivo studies have claimed that MWR may cause various kinds of damage in tissues. The aim of this study is to examine the possible effects of exposure to low-intensity MWR on DNA and oxidative damage in the livers of rats. Eighteen Sprague-Dawley male rats were divided into three equal groups randomly (n = 6). Group 1 (Sham-control): rats were kept under conditions the same as those of other groups, except for MWR exposure. Group 2: rats exposed to 1800 MHz (SAR: 0.62 W/kg) at 0.127 ± 0.04 mW/cm2 power density, and Group 3: rats exposed to 2,100 MHz (SAR: 0.2 W/kg) at 0.038 ± 0.03 mW/cm2 power density. Microwave application groups were exposed to MWR 2 h/day for 7 months. At the end of the exposure period, the rats were sacrificed and DNA damage, malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and total oxidant-antioxidant parameter analyses were conducted in their liver tissue samples. It was found that 1800 and 2100 MHz low-intensity MWR caused a significant increase in MDA, 8-OHdG, total oxidant status, oxidative stress index, and comet assay tail intensity (P < 0.05), while total antioxidant status levels (P < 0.05) decreased. The results of our study showed that whole-body exposure to 1800 and 2100 MHz low-intensity MWR emitted by cell phones can induce oxidative stress by altering oxidant-antioxidant parameters and lead to DNA strand breaks and oxidative DNA damage in the liver of rats. Bioelectromagnetics. 2021;42:76-85. © 2020 Bioelectromagnetics Society.


Subject(s)
Antioxidants , Microwaves , Animals , DNA Damage , Liver , Male , Oxidants , Oxidative Stress , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...