Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 97(20): 205007, 2006 Nov 17.
Article in English | MEDLINE | ID: mdl-17155692

ABSTRACT

An experimental method is proposed for the creation of plasma optical waveguides at low electron densities. The method consists of creating a hollow neutral-hydrogen channel by means of fast local heating of a hydrogen volume by a needlelike electron beam, followed by laser ionization of the hydrogen to provide the plasma waveguide. Results of numerical simulations are presented which show that guiding with an axial electron density in the range of 10(17) cm-3 can be achieved with a matched spot size of 30 microm. Its application for laser wakefield acceleration of electrons is discussed. The method would enable guiding lengths up to 30 cm at maximal energies of accelerated electrons in the range 10-100 GeV.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 2): 046403, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16383541

ABSTRACT

Dust is found in plasmas used in industrial applications, such as microelectronics and solar cell manufacturing, in fusion plasmas, where it is usually the result of plasma-wall interactions, and in plasmas in space, such as planetary atmospheres, cometary tails, planetary rings, interstellar molecular clouds, and star and planet formation regions. In plasma applications, magnetic fields are occasionally used, mainly to confine the plasma. In space, however, magnetic fields are very often present and they may strongly influence the behavior of dusty plasma, for instance in the formation of stars and planets. We extended a fully self-consistent two-dimensional fluid model for radio-frequency discharges by adding a homogeneous axial magnetic field and the effect it has on the transport of plasma species in a low-temperature dusty discharge. We show that the magnetic field has an important effect on the (ambipolar) diffusion of ions and electrons in the bulk of the discharge. This causes an important change in the force balance of the dust particles and in the time scales of the formation of a dust-free void. Finally, we compare the parameters of the modeled discharge with the parameters of a planet formation region around a young stellar object (YSO). We conclude that a magnetic field in both low-temperature rf discharges under micro-gravity conditions and dusty plasmas around YSO's has an important effect on the transport of dust and must be important for the formation of planets and stars.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(4 Pt 2): 045401, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14682994

ABSTRACT

Clouds of dust particles in radio frequency discharges often show a periodic vortexlike motion, especially near the edges of the electrodes or near the tip of an electrostatic probe. These vortices often last as long as the discharge is powered. In a previous paper we have followed a small number of individual dust particles in a discharge under microgravity conditions, moving under the influence of forces computed by means of a self-consistent two-dimensional hydrodynamic model, and interacting via a screened Coulomb potential. The resulting motion showed the vortexlike rotation. In this paper we discuss this phenomenon in more detail, using a simplified model with harmonic forces, but extending the simulations to three dimensions. Stable vortices are observed, which show a more chaotic behavior than in the two-dimensional situation. Particles frequently jump up and down between two counterrotating vortices. The generation of the vortices can be ascribed to a nonzero rotation of the net global force vector field, which is the sum of the ion drag force, the electric force, and the thermophoretic force in case of the experiments. Comparison of experimental data with simulations using a model potential may open a way to unravel the forces inside a cloud of dust particles.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(5 Pt 2): 056405, 2003 May.
Article in English | MEDLINE | ID: mdl-12786285

ABSTRACT

A two-dimensional hydrodynamic model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently has been supplemented with a separate dust particle tracing module to study the behavior of dust vortices. These coherent vortices appear in plasma crystal experiments performed under microgravity conditions. The nonconservative total force exerted by the discharge on the dust particles is responsible for the generation of the vortices. The contribution of the thermophoretic force driven by the gas temperature gradient plays an insignificant role in the generation of the vortices, even when the gas heating via the dust particles is taken into account. The forces related to the electric field, including the ion drag force, are dominant.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 2): 066407, 2003 Jun.
Article in English | MEDLINE | ID: mdl-16241359

ABSTRACT

A dusty radio-frequency argon discharge is simulated with the use of a two-dimensional fluid model. In the model, discharge quantities, such as the fluxes, densities, and electric field are calculated self-consistently. The charge and density of the dust are calculated with an iterative method. During the transport of the dust, its charge is kept constant in time. The dust influences the electric potential distribution through its charge and the density of the plasma through recombination of positive ions and electrons on its surface. Results are presented for situations in which the dust significantly changes the discharge characteristics, both by a strong reduction of the electron density and by altering the electric potential by its charge. Simulations for dust particles having a radius of 7.5 microm show that a double space charge layer is created around the sharp boundary of the dust crystal. A central dust-free region (void) is created by the ion drag force. Inside this void a strong increase of the production of argon metastables is found. This phenomenon is in agreement with experimental observations, where an enhanced light emission is seen inside the void.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(1 Pt 2): 015401, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11800728

ABSTRACT

A two-dimensional fluid model for a dusty argon plasma in which the plasma and dust parameters are solved self-consistently, is used to study the behavior of voids, i.e., dust-free regions inside dust clouds. These voids appear in plasma crystal experiments performed under microgravity conditions. The ion drag force turns out to be the most promising driving force behind these voids. The contribution of the thermophoretic force, driven by the temperature gradient induced by gas heating from ion-neutral collisions, can be neglected in the quasineutral center of the plasma.

SELECTION OF CITATIONS
SEARCH DETAIL
...