Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36499921

ABSTRACT

In this paper, an annular/circular plate made of hyperelastic material and considering the viscoelastic property was investigated based on a novel nonlinear elasticity theory. A new approach for hyperelastic materials in conjunction with the Kelvin-Voigt scheme is employed to obtain the structure's large deformation under uniform transverse loading. The constitutive equations were extracted using the energy method. The derived partial differential time-dependent equations have been solved via the semi-analytical polynomial method (SAPM). The obtained results have been validated by ABAQUS software and the available paper. In consequence, a good agreement between the results was observed. Finally, several affecting parameters on the analysis have been attended to and studied, such as the nonlinear elasticity analysis, the boundary conditions, loading, and the material's viscosity. It can be possible to obtain the needed time for achieving the final deformation of the structure based on the applied analysis in this research.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35957026

ABSTRACT

The impetus of writing this paper is to propose an efficient detection mechanism to scan the surface profile of a micro-sample using cantilever-based atomic force microscopy (AFM), operating in non-contact mode. In order to implement this scheme, the principal parametric resonance characteristics of the resonator are employed, benefiting from the bifurcation-based sensing mechanism. It is assumed that the microcantilever is made from a hyperelastic material, providing large deformation under small excitation amplitude. A nonlinear strain energy function is proposed to capture the elastic energy stored in the flexible component of the device. The tip-sample interaction is modeled based on the van der Waals non-contact force. The nonlinear equation governing the AFM's dynamics is established using the extended Hamilton's principle, obeying the Euler-Bernoulli beam theory. As a result, the vibration behavior of the system is introduced by a nonlinear equation having a time-dependent boundary condition. To capture the steady-state numerical response of the system, a developed Galerkin method is utilized to discretize the partial differential equation to a set of nonlinear ordinary differential equations (ODE) that are solved by the combination of shooting and arc-length continuation method. The output reveals that while the resonator is set to be operating near twice the fundamental natural frequency, the response amplitude undergoes a significant drop to the trivial stable branch as the sample's profile experiences depression in the order of the picometer. According to the performed sensitivity analysis, the proposed working principle based on principal parametric resonance is recommended to design AFMs with ultra-high detection resolution for surface profile scanning.

3.
Int J Eng Sci ; 170: 103604, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34728858

ABSTRACT

The SARS-CoV-2 virus, which has emerged as a Covid-19 pandemic, has had the most significant impact on people's health, economy, and lifestyle around the world today. In the present study, the SARS-CoV-2 virus is mechanically simulated to obtain its deformation and natural frequencies. The virus under analysis is modeled on a viscoelastic spherical structure. The theory of shell structures in mechanics is used to derive the governing equations. Whereas the virus has nanometric size, using classical theories may give incorrect results. Consequently, the nonlocal elasticity theory is used to consider the effect of interatomic forces on the results. From the mechanical point of view, if a structure vibrates with a natural frequency specific to it, the resonance phenomenon will occur in that structure, leading to its destruction. Therefore, it is possible that the protein chains of SARS-CoV-2 would be destroyed by vibrating it at natural frequencies. Since the mechanical properties of SARS-CoV-2 are not clearly known due to the new emergence of this virus, deformation and natural frequencies are obtained in a specific interval. Researchers could also use this investigation as a pioneering study to find a non-vaccine treatment solution for the SARS-CoV-2 virus and various viruses, including HIV.

4.
Nanomaterials (Basel) ; 11(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668831

ABSTRACT

This paper presents forced vibration analysis of a simply supported beam made of carbon nanotube-reinforced composite material subjected to a harmonic point load at the midpoint of beam. The composite beam is made of a polymeric matrix and reinforced the single-walled carbon nanotubes with their various distributions. In the beam kinematics, the first-order shear deformation beam theory was used. The governing equations of problem were derived by using the Lagrange procedure. In the solution of the problem, the Ritz method was used, and algebraic polynomials were employed with the trivial functions for the Ritz method. In the solution of the forced vibration problem, the Newmark average acceleration method was applied in the time history. In the numerical examples, the effects of carbon nanotube volume fraction, aspect ratio, and dynamic parameters on the forced vibration response of carbon nanotube-reinforced composite beams are investigated. In addition, some comparison studies were performed, with special results of published papers to validate the using formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...