Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 20(9): 3385-3391, 2019 09 09.
Article in English | MEDLINE | ID: mdl-31424203

ABSTRACT

Some synthetic polymers can block cell death when applied following an injury that would otherwise kill the cell. This cellular rescue occurs through interactions of the polymers with cell membranes. However, general principles for designing synthetic polymers to ensure strong, but nondisruptive, cell membrane targeting are not fully elucidated. Here, we tailored biomimetic phosphorylcholine-containing block copolymers to interact with cell membranes and determined their efficacy in blocking neuronal death following oxygen-glucose deprivation. By adjusting the hydrophilicity and membrane affinity of poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC)-based triblock copolymers, the surface active regime in which the copolymers function effectively as membrane-targeting cellular rescue agents was determined. We identified nonintrusive interactions between the polymer and the cell membrane that alter the collective dynamics of the membrane by inducing rigidification without disrupting lipid packing or membrane thickness. In general, our results open new avenues for biological applications of polyMPC-based polymers and provide an approach to designing membrane-targeting agents to block cell death after injury.


Subject(s)
Biocompatible Materials/pharmacology , Methacrylates/chemistry , Phosphorylcholine/analogs & derivatives , Polymers/chemistry , Biocompatible Materials/chemistry , Biomimetics/methods , Cell Death/drug effects , Cell Membrane/drug effects , Humans , Hydrophobic and Hydrophilic Interactions/drug effects , Methacrylates/pharmacology , Phosphorylcholine/chemistry , Phosphorylcholine/pharmacology , Polymers/pharmacology
2.
Biochim Biophys Acta Biomembr ; 1860(5): 1216-1230, 2018 May.
Article in English | MEDLINE | ID: mdl-29447917

ABSTRACT

The envelope (E) protein of Dengue virus rearranges to a trimeric hairpin to mediate fusion of the viral and target membranes, which is essential for infectivity. Insertion of E into the target membrane serves to anchor E and possibly also to disrupt local order within the membrane. Both aspects are likely to be affected by the depth of insertion, orientation of the trimer with respect to the membrane normal, and the interactions that form between trimer and membrane. In the present work, we resolved the depth of insertion, the tilt angle, and the fundamental interactions for the soluble portion of Dengue E trimers (sE) associated with planar lipid bilayer membranes of various combinations of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol (POPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and cholesterol (CHOL) by neutron reflectivity (NR) and by molecular dynamics (MD) simulations. The results show that the tip of E containing the fusion loop (FL) is located at the interface of the headgroups and acyl chains of the outer leaflet of the lipid bilayers, in good agreement with prior predictions. The results also indicate that E tilts with respect to the membrane normal upon insertion, promoted by either the anionic lipid POPG or CHOL. The simulations show that tilting of the protein correlates with hydrogen bond formation between lysines and arginines located on the sides of the trimer close to the tip (K246, K247, and R73) and nearby lipid headgroups. These hydrogen bonds provide a major contribution to the membrane anchoring and may help to destabilize the target membrane.


Subject(s)
Lipid Bilayers/metabolism , Viral Envelope Proteins/metabolism , Virus Internalization , Amino Acid Sequence , Animals , Cells, Cultured , Hydrogen Bonding , Lipid Bilayers/chemistry , Membrane Fusion , Models, Molecular , Molecular Dynamics Simulation , Neutrons , Protein Binding , Spodoptera , Viral Envelope Proteins/chemistry , Virus Attachment
3.
Phys Rev Lett ; 118(16): 167801, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28474912

ABSTRACT

If you mix lines and circles, what happens at the edge of the mixture? The problem is simply stated, but the answer is not obvious. Twenty years ago it was proposed that a universal topological driving force would drive cyclic chains to enrich the surface of blends of linear and cyclic chains. Here such behavior is demonstrated experimentally for sufficiently long chains and the limit in molecular weight where packing effects dominate over the topological driving force is identified.

4.
Langmuir ; 32(42): 10851-10860, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27709955

ABSTRACT

We report the effects of compressed CO2 molecules as a novel plasticization agent for poly(3-hexylthiophene) (P3HT)-conjugated polymer thin films. In situ neutron reflectivity experiments demonstrated the excess sorption of CO2 molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point. The results proved that these CO2 molecules accelerated the crystallization process of the polymer on the basis of ex situ grazing incidence X-ray diffraction measurements after drying the films via rapid depressurization to atmospheric pressure: both the out-of-plane lamellar ordering of the backbone chains and the intraplane π-π stacking of the side chains were significantly improved, when compared with those in the control P3HT films subjected to conventional thermal annealing (at T = 170 °C). Electrical measurements elucidated that the CO2-annealed P3HT thin films exhibited enhanced charge carrier mobility along with decreased background charge carrier concentration and trap density compared with those in the thermally annealed counterpart. This is attributed to the CO2-induced increase in polymer chain mobility that can drive the detrapping of molecular oxygen and healing of conformational defects in the polymer thin film. Given the universality of the excess sorption of CO2 regardless of the type of polymers, the present findings suggest that CO2 annealing near the critical point can be useful as a robust processing strategy for improving the structural and electrical characteristics of other semiconducting conjugated polymers and related systems such as polymer:fullerene bulk heterojunction films.

5.
Langmuir ; 32(22): 5623-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27172089

ABSTRACT

The scaling of the thickness, hs, of a densely grafted polymer brush of chain length N and grafting density σ swollen in vapor agrees quantitatively with the scaling reported by Kuhl et al. for densely grafted brushes swollen in liquid. Deep in the brush, next to the substrate, the shape of the segment concentration profile is the same whether the brush is swollen by liquid or by vapor. Differences in the segment concentration profile are manifested primarily in the swollen brush interface with the surrounding fluid. The interface of the polymer brush swollen in vapor is much more abrupt than that of the same brush swollen in liquid. This has implications for the compressibility of the swollen brush surface and for fluctuations at that surface.

6.
Soft Matter ; 12(24): 5372-7, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-27222250

ABSTRACT

The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush. The portion of the film of initially untethered chains that interpenetrates with the brush becomes so viscous as to effectively play the role of a rigid substrate. Since these hybrid samples containing a covalently tethered layer at the bottom do not readily dewet, and are more robust than thin layers of untethered short chains on rigid substrates, they provide a route for tailoring polymer layer surface properties such as wetting, adhesion and friction.

7.
Langmuir ; 31(46): 12688-98, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26496486

ABSTRACT

We found that interactions of dipalmitoylphosphatidylcholine (DPPC) lipid monolayers with sugars are influenced by addition of NaCl. This work is of general importance in understanding how sugar-lipid-salt interactions impact biological systems. Using Langmuir isothermal compressions, fluorescence microscopy, atomic force microscopy, and neutron reflectometry, we examined DPPC monolayers upon addition of sugars/polyols and/or monovalent salts. Sugar-lipid interactions in the presence of NaCl increased with increasing complexity of the sugar/polyol in the order glycerol ≪ glucose < trehalose. When the anion was altered in the series NaF, NaCl, and NaBr, only minor differences were observed. When comparing LiCl, NaCl, and KCl, sodium chloride had the greatest influence on glucose and trehalose interactions with DPPC. We propose that heterogeneity created by cation binding allows for sugars to bind the lipid headgroups. While cation binding increases in the order K(+) < Na(+) < Li(+), lithium ions may also compete with glucose for binding sites. Thus, both cooperative and competitive factors contribute to the overall influence of salts on sugar-lipid interactions.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Glucose/chemistry , Glycerol/chemistry , Sodium Chloride/chemistry , Trehalose/chemistry , Stereoisomerism , Water/chemistry
8.
Soft Matter ; 11(20): 3994-4001, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25893710

ABSTRACT

Moisture attack on adhesive joints is a long-standing scientific and engineering problem. A particularly interesting observation is that when the moisture level in certain systems exceeds a critical concentration, the bonded joint shows a dramatic loss of strength. The joint interface plays a dominant role in this phenomenon; however, why a critical concentration of moisture exists and what role is played by the properties of the bulk adhesive have not been adequately addressed. Moreover if the interface is crucial, the local water content near the interface will help elucidate the mechanisms of criticality more than the more commonly examined bulk water concentration in the adhesive. To gain a detailed picture of this criticality, we have combined a fracture mechanics approach to determine joint strength with neutron reflectivity, which provides the moisture distribution near the interface. A well-defined model system, silica glass substrates bonded to a series of polymers based on poly(n-alkyl methacrylate), was utilized to probe the role of the adhesive in a systematic manner. By altering the alkyl chain length, the molecular structure of the polymer can be systematically changed to vary the chemical and physical properties of the adhesive over a relatively wide range. Our findings suggest that the loss of adhesion is dependent on a combination of the build-up of the local water concentration near the interface, interfacial swelling stresses resulting from water absorption, and water-induced weakening of the interfacial bonds. This complexity explains the source of criticality in environmental adhesion failure and could enable design of adhesives to minimize environmental failure.

9.
Soft Matter ; 10(34): 6392-403, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-24930998

ABSTRACT

The effects of CO2 annealing on the melting and subsequent melt crystallization processes of spin-cast poly(ethylene oxide) (PEO) ultrathin films (20-100 nm in thickness) prepared on Si substrates were investigated. By using in situ neutron reflectivity, we found that all the PEO thin films show melting at a pressure as low as P = 2.9 MPa and at T = 48 °C which is below the bulk melting temperature (Tm). The films were then subjected to quick depressurization to atmospheric pressure, resulting in the non-equilibrium swollen state, and the melt crystallization (and/or dewetting) process was carried out in air via subsequent annealing at given temperatures below Tm. Detailed structural characterization using grazing incidence X-ray diffraction, atomic force microscopy, and polarized optical microscopy revealed two unique aspects of the CO2-treated PEO films: (i) a flat-on lamellar orientation, where the molecular chains stand normal to the film surface, is formed within the entire film regardless of the original film thickness and the annealing temperature; and (ii) the dewetting kinetics for the 20 nm thick film is much slower than that for the thicker films. The key to these phenomena is the formation of irreversibly adsorbed layers on the substrates during the CO2 annealing: the limited plasticization effect of CO2 at the polymer-substrate interface promotes polymer adsorption rather than melting. Here we explain the mechanisms of the melt crystallization and dewetting processes where the adsorbed layers play vital roles.

10.
Macromol Rapid Commun ; 34(20): 1642-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24105959

ABSTRACT

Sharp dynamic thermal gradient (∇T ≈ 45 °C mm(-1)) field-driven assembly of cylinder-forming block copolymer (c-BCP) films filled with PS-coated gold nanoparticles (AuNPs; dNP ≈ 3.6 nm, φNP ≈ 0-0.1) is studied. The influence of increasing AuNP loading fraction on dispersion and assembly of AuNPs within c-BCP (PS-PMMA) films is investigated via both static and dynamic thermal gradient fields. With φNP increasing, a sharp transition from vertical to random in-plane horizontal cylinder orientation is observed due to enrichment of AuNPs at the substrate side and favorable interaction of PMMA chains with gold cores. Furthermore, a detachable capping elastomer layer can self-align these random oriented PMMA microdomains into unidirectional hybrid AuNP/c-BCP nanolines, quantified with an alignment order parameter, S.


Subject(s)
Metal Nanoparticles/chemistry , Polymers/chemistry , Gold/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry
11.
Structure ; 21(10): 1822-33, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24035710

ABSTRACT

Many proteins are posttranslationally modified by acylation targeting them to lipid membranes. While methods such as X-ray crystallography and nuclear magnetic resonance are available to determine the structure of folded proteins in solution, the precise position of folded domains relative to a membrane remains largely unknown. We used neutron and X-ray reflection methods to measure the displacement of the core domain of HIV Nef from lipid membranes upon insertion of the N-terminal myristate group. Nef is one of several HIV-1 accessory proteins and an essential factor in AIDS progression. Upon insertion of the myristate and residues from the N-terminal arm, Nef transitions from a closed-to-open conformation that positions the core domain 70 Å from the lipid headgroups. This work rules out previous speculation that the Nef core remains closely associated with the membrane to optimize interactions with the cytoplasmic domain of MHC-1.


Subject(s)
HIV-1 , nef Gene Products, Human Immunodeficiency Virus/chemistry , Acylation , Adsorption , Amino Acid Motifs , Membranes, Artificial , Models, Molecular , Neutron Diffraction , Phosphatidylglycerols/chemistry , Protein Processing, Post-Translational , Protein Structure, Tertiary , X-Ray Diffraction
12.
Phys Rev Lett ; 111(6): 068303, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23971618

ABSTRACT

The dynamics of thermally stimulated surface fluctuations of 100 nm thick films of long-branched polymers are measured for the first time. In contrast to comparable films of linear or cyclic chains that show no change in viscosity upon confinement, films of 6-pom, 6-star, and 6-end end-branched stars show viscosities, inferred from x-ray photon correlation spectroscopy, as much as 100 times higher than in the bulk. This difference varies in magnitude with chain architecture. Branching has a profound effect on confinement, even for these unentangled chains.

13.
ACS Appl Mater Interfaces ; 5(8): 2976-84, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23560512

ABSTRACT

We demonstrate, using neutron reflectivity, that the width of a nonequilibrium interface between an organo-soluble aromatic polyimide film and triacetate cellulose (TAC) support film created by spin-coating or solution-casting can be broadened in a controllable way using a "swelling agent" in the deposition process. In a favorable case, the adhesion, as measured by T-peel tests, can be increased by a factor of 7 by adjustment of the solvent composition. The morphologies of the TAC fractured surfaces after peeling tests measured by AFM reveal that broadening of the interfacial width causes an interconnected network in the interface, leading to a sharp increase in the interfacial adhesion. Differences in the chemistry (solubility) of the materials being deposited do make a difference in the effectiveness of this strategy of using a "swelling agent". For one polyimide, a 3-fold increase in adhesion can be obtained by optimizing the deposition temperature, but this approach for improving adhesion is less effective than that of adding "swelling agent". The formation of robust interfaces of this type is important because of the critical roles that multilayer films containing polymers with special properties and tailored structures play in applications as diverse as computer displays, photovoltaic devices, and polymeric electronics. The "swelling agent" strategy makes it possible to produce polymer multilayer structures in a cost-effective way with roll-to-roll mass production using direct solution coating.

14.
Langmuir ; 29(10): 3259-68, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23441753

ABSTRACT

The structure of a hydrated poly(N-isopropylacrylamide) brush loaded with 5 vol % Isoniazid is studied as a function of temperature using neutron reflectometry (NR) and atomic force microscopy (AFM). NR measurements show that Isoniazid increases the thickness of the brush before, during and after the polymer collapse, and it is retained inside the brush at all measured temperatures. The Isoniazid concentration in the expanded brush is ~14% higher than in the bulk solution, and the concentration nearly doubles in the collapsed polymer, suggesting stronger binding between Isoniazid and the polymer compared to water, even at temperatures below the lower critical solution temperature (LCST) where the polymer is hydrophilic. Typically, additives that bind strongly to the polymer backbone and increase the hydrophilicity of the polymer will delay the onset of the LCST, which is suggested by AFM and NR measurements. The extent of small-molecule loading and distribution throughout a thermo-responsive polymer brush, such as pNIPAAm, will have important consequences for applications such as drug delivery and gating.


Subject(s)
Acrylamides/chemistry , Microscopy, Atomic Force/methods , Polymers/chemistry , Acrylic Resins , Drug Carriers/chemistry , Isoniazid/chemistry
15.
J Phys Chem B ; 116(24): 7367-78, 2012 Jun 21.
Article in English | MEDLINE | ID: mdl-22616550

ABSTRACT

By use of a combined experimental and theoretical approach, a model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated. The polymer segment density profiles of the PEO brush in the direction normal to the air-water interface under various grafting density conditions were determined by using the neutron reflectivity (NR) measurement technique. To achieve a theoretically sound analysis of the reflectivity data, we used a data analysis method that utilizes the self-consistent field (SCF) theoretical modeling as a tool for predicting expected reflectivity results for comparison with the experimental data. Using this data analysis technique, we discovered that the effective Flory-Huggins interaction parameter of the PEO brush chains is significantly greater than that corresponding to the θ condition in Flory-Huggins solutions (i.e., χ(PEO-water)(brush chains)/χ(PEO-water)(θ condition) ≈ 1.2), suggesting that contrary to what is more commonly observed for PEO in normal situations (χ(PEO-water)(free chains)/χ(PEO-water)(θ condition) ≈ 0.92), the PEO chains are actually not "hydrophilic" when they exist as polymer brush chains, because of the many body interactions that are forced to be effective in the brush situation. This result is further supported by the fact that the surface pressures of the PEO brush calculated on the basis of the measured χ(PEO-water) value are in close agreement with the experimental surface pressure-area isotherm data. The SCF theoretical analysis of the surface pressure behavior of the PEO brush also suggests that even though the grafted PEO chains experience a poor solvent environment, the PEO brush layer exhibits positive surface pressures, because the hydrophobicity of the PEO brush chains (which favors compression) is insufficient to overcome the opposing effect of the chain conformational entropy (which resists compression).


Subject(s)
Polyethylene Glycols/chemistry , Water/chemistry , Acrylates/chemistry , Air , Microscopy, Atomic Force , Neutron Diffraction , Polymers/chemistry , Solvents/chemistry , Surface Properties
16.
Langmuir ; 28(19): 7374-81, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22515304

ABSTRACT

The structure of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C(4)mpyr][NTf(2)]) room-temperature ionic liquid at an electrified gold interface was studied using neutron reflectometry, cyclic voltammetry, and differential capacitance measurements. Subtle differences were observed between the reflectivity data collected on a gold electrode at three different applied potentials. Detailed analysis of the fitted reflectivity data reveals an excess of [C(4)mpyr](+) at the interface, with the amount decreasing at increasingly positive potentials. A cation rich interface was found even at a positively charged electrode, which indicates a nonelectrostatic (specific) adsorption of [C(4)mpyr](+) onto the gold electrode.

17.
Phys Rev Lett ; 109(26): 265501, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23368578

ABSTRACT

We report the chain conformations of polymer molecules accommodated at the solid-polymer melt interfaces in equilibrium. Polystyrene "Guiselin" brushes (adsorbed layers) with different molecular weights were prepared on Si substrates and characterized by using x-ray and neutron reflectivity. The results are intriguing to show that the adsorbed layers are composed of the two different nanoarchitectures: flattened chains that constitute the inner higher density region of the adsorbed layers and loosely adsorbed polymer chains that form the outer bulklike density region. In addition, we found that the lone flattened chains, which are uncovered by the additional prolonged solvent leaching (∼120 days), are reversibly densified with increasing temperature up to 150 °C. By generalizing the chain conformations of bulks, we postulate that the change in probabilities of the local chain conformations (i.e., trans and gauche states) of polymer molecules is the origin of this densification process.


Subject(s)
Nanostructures/chemistry , Polystyrenes/chemistry , Silicon/chemistry , Adsorption , Kinetics , Models, Chemical , Molecular Conformation , Surface Properties , Transition Temperature
18.
Langmuir ; 27(20): 12443-50, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21882880

ABSTRACT

In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films. It was found that highly ordered nanostructures consisting of spherical micelles with a PS core surrounded by a P2VP corona were produced. In addition, bilayer films of PS homopolymer on top of a PS-b-P2VP layer also underwent micellization with increasing temperature but the micellization was strongly dependent on the thickness of the PS and PS-b-P2VP layers.


Subject(s)
Ionic Liquids/chemistry , Micelles , Polystyrenes/chemistry , Polyvinyls/chemistry , Microscopy, Electron, Scanning , Models, Molecular , Surface Properties , Temperature
19.
ACS Appl Mater Interfaces ; 3(9): 3375-83, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21875044

ABSTRACT

Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W. Varying the distance of the feed from the plasma impacts the degree of cross-linking in the film center, thickness of the surface layer, and thickness of the transition region at the substrate. Deposition at the highest power, 65 W, both enhances cross-linking and creates loose fragments with fluorine content higher than the average. The thickness of the low cross-link density region at the air interface plays an important role in determining the width of the interface built with a layer subsequently deposited atop the first.


Subject(s)
Gases/chemistry , Nanostructures/chemistry , Chlorofluorocarbons , Chlorofluorocarbons, Methane/chemistry , Fluorine/chemistry , Photoelectron Spectroscopy , Polymers/chemistry
20.
Biomacromolecules ; 12(6): 2216-24, 2011 Jun 13.
Article in English | MEDLINE | ID: mdl-21553874

ABSTRACT

Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract ( T. viride ) and an endoglucanse from A. niger with amorphous cellulose films. The use of amorphous cellulose is motivated by that the fact that several biomass pretreatments currently under investigation disrupt the native crystalline structure of cellulose and increase the amorphous content. NR reveals the profile of water through the film at nanometer resolution and is highly sensitive to interfacial roughness, whereas QCM-D provides changes in mass and film stiffness. NR can be performed using either H(2)O- or D(2)O-based aqueous reservoirs. NR measurement of swelling of a cellulose film in D(2)O and in H(2)O revealed that D/H exchange on the cellulose chains must be taken into account when a D(2)O-based reservoir is used. The results also show that cellulose films swell slightly more in D(2)O than in H(2)O. Regarding enzymatic digestion, at 20 °C in H(2)O buffer the T. viride cocktail rapidly digested the entire film, initially roughening the surface, followed by penetration and activity throughout the bulk of the film. In contrast, over the same time period, the endoglucanase was active mainly at the surface of the film and did not increase the surface roughness.


Subject(s)
Cellulase/metabolism , Cellulose/metabolism , Aspergillus niger/enzymology , Cellulase/chemistry , Cellulose/chemistry , Crystallization , Hydrolysis , Neutrons , Quartz Crystal Microbalance Techniques , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared , Surface Properties , Trichoderma/enzymology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...