Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(5)2023 May 07.
Article in English | MEDLINE | ID: mdl-37317208

ABSTRACT

Lactiplantibacillus plantarum is best known for its significant adaptive potential and ability to colonize different ecological niches. Different strains of L. plantarum are widely used as probiotics. To characterize the probiotic potential of the novel L. plantarum FCa3L strain isolated from fermented cabbage, we sequenced its whole genome using the Illumina MiSeq platform. This bacterial isolate had a circular chromosome of 3,365,929 bp with 44.3% GC content and a cyclic phage phiX174 of 5386 bp with 44.7% GC content. The results of in vitro studies showed that FCa3L was comparable with the reference probiotic strain L. plantarum 8PA3 in terms of acid and bile tolerance, adhesiveness, H2O2 production, and acidification rate. The strain 8PA3 possessed higher antioxidant activity, while FCa3L demonstrated superior antibacterial properties. The antibiotic resistance of FCa3L was more relevant to the probiotic strain than that of 8PA3, although a number of silent antibiotic resistance genes were identified in its genome. Genomic evidence to support adhesive and antibacterial properties, biosynthesis of bioactive metabolites, and safety of FCa3L was also presented. Thus, this study confirmed the safety and probiotic properties of L. plantarum FCa3L via complete genome and phenotype analysis, suggesting its potential as a probiotic, although further in vivo investigations are still necessary.

2.
Int J Mol Sci ; 24(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37298231

ABSTRACT

Synthesis of silver nanoparticles using extracts from plants is an advantageous technological alternative to the traditional colloidal synthesis due to its simplicity, low cost, and the inclusion of environmentally friendly processes to obtain a new generation of antimicrobial compounds. The work describes the production of silver and iron nanoparticles using sphagnum extract as well as traditional synthesis. Dynamic light scattering (DLS) and laser doppler velocimetry methods, UV-visible spectroscopy, transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), dark-field hyperspectral microscopy, and Fourier-transform infrared spectroscopy (FT-IR) were used to study the structure and properties of synthesized nanoparticles. Our studies demonstrated a high antibacterial activity of the obtained nanoparticles, including the formation of biofilms. Nanoparticles synthesized using sphagnum moss extracts likely have high potential for further research.


Subject(s)
Metal Nanoparticles , Plant Extracts , Anti-Bacterial Agents/chemistry , Green Chemistry Technology/methods , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Silver/chemistry , Spectroscopy, Fourier Transform Infrared , Iron
3.
Sci Total Environ ; 854: 158574, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36075443

ABSTRACT

The high worldwide consumption of cheap plastic goods has already resulted in a serious environmental plastic pollution, exacerbated by piling of disposed personal protective equipment because of the recent outbreak of COVID-19. The aim of this study was to assess the feasibility of dark-field hyperspectral microscopy in the 400-1000 wavelength range for detection of nanoplastics derived from weathered polypropylene masks. A surgical mask was separated to layers and exposed to UV radiation (254 nm) for 192 h. Oxidative degradation of the polypropylene was evidenced by ATR FT-IR analysis. UV treatment for 192 h resulted in generation of differently shaped micro- and nano-sized particles, visualized by dark-field microscopy. The presence of nanoparticles was confirmed by AFM studies. The hyperspectral profiles (400-1000 nm) were collected after every 48 h of the UV treatment. The distinct hyperspectral features faded after prolonged UV exposure, but the assignment of some particles to either blue or white layers of mask could still be made based on spectral characteristics.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Plastics/analysis , Microplastics/analysis , Polypropylenes , Masks , Microscopy , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
4.
Polymers (Basel) ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35054750

ABSTRACT

Mesenchymal stem cells (MSCs) have extensive pluripotent potential to differentiate into various cell types, and thus they are an important tool for regenerative medicine and biomedical research. In this work, the differentiation of hTERT-transduced adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts on substrates with nanotopography generated by magnetic iron oxide nanoparticles (MNPs) and DNA was investigated. Citrate-stabilized MNPs were synthesized by the chemical co-precipitation method and sized around 10 nm according to microscopy studies. It was shown that MNPs@DNA coatings induced chondrogenesis and osteogenesis in hTERT-transduced MSCs. The cells had normal morphology and distribution of actin filaments. An increase in the concentration of magnetic nanoparticles resulted in a higher surface roughness and reduced the adhesion of cells to the substrate. A glass substrate modified with magnetic nanoparticles and DNA induced active chondrogenesis of hTERT-transduced MSC in a twice-diluted differentiation-inducing growth medium, suggesting the possible use of nanostructured MNPs@DNA coatings to obtain differentiated cells at a reduced level of growth factors.

5.
Int J Mol Sci ; 23(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054990

ABSTRACT

The concerns regarding microplastics and nanoplastics pollution stimulate studies on the uptake and biodistribution of these emerging pollutants in vitro. Atomic force microscopy in nanomechanical PeakForce Tapping mode was used here to visualise the uptake and distribution of polystyrene spherical microplastics in human skin fibroblast. Particles down to 500 nm were imaged in whole fixed cells, the nanomechanical characterization allowed for differentiation between internalized and surface attached plastics. This study opens new avenues in microplastics toxicity research.


Subject(s)
Biochemical Phenomena , Endocytosis , Microplastics , Microscopy, Atomic Force , Cell Survival , Fibroblasts/metabolism , Humans , Intracellular Space , Microscopy , Microscopy, Atomic Force/methods , Polystyrenes
6.
Pharmaceutics ; 13(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34575552

ABSTRACT

Topical administration of drugs is required for the treatment of parasitic diseases and insect infestations; therefore, fabrication of nanoscale drug carriers for effective insecticide topical delivery is needed. Here we report the enhanced immobilization of halloysite tubule nanoclay onto semiaquatic capybaras which have hydrophobic hair surfaces as compared to their close relatives, land-dwelling guinea pigs, and other agricultural livestock. The hair surface of mammals varies in hydrophobicity having a cortex surrounded by cuticles. Spontaneous 1-2 µm thick halloysite hair coverages on the semi-aquatic rodent capybara, non-aquatic rodent guinea pig, and farm goats were compared. The best coating was found for capybara due to the elevated 5 wt% wax content. As a result, we suggest hair pretreatment with diluted wax for enhanced nanoclay adsorption. The formation of a stable goat hair coverage with a 2-3 µm halloysite layer loaded with permethrin insecticide allowed for long-lasting anti-parasitic protection, enduring multiple rain wettings and washings. We expect that our technology will find applications in animal parasitosis protection and may be extended to prolonged human anti-lice treatment.

7.
Int J Mol Sci ; 22(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34575834

ABSTRACT

The problem of purifying domestic and hospital wastewater from pharmaceutical compounds is becoming more and more urgent every year, because of the continuous accumulation of chemical pollutants in the environment and the limited availability of freshwater resources. Clay adsorbents have been repeatedly proposed as adsorbents for treatment purposes, but natural clays are hydrophilic and can be inefficient for catching hydrophobic pharmaceuticals. In this paper, a comparison of adsorption properties of pristine montmorillonite (MMT) and montmorillonite modified with stearyl trimethyl ammonium (hydrophobic MMT-STA) towards carbamazepine, ibuprofen, and paracetamol pharmaceuticals was performed. The efficiency of adsorption was investigated under varying solution pH, temperature, contact time, initial concentration of pharmaceuticals, and adsorbate/adsorbent mass ratio. MMT-STA was better than pristine MMT at removing all the pharmaceuticals studied. The adsorption capacity of hydrophobic montmorillonite to pharmaceuticals decreased in the following order: carbamazepine (97%) > ibuprofen (95%) > paracetamol (63-67%). Adsorption isotherms were best described by Freundlich model. Within the pharmaceutical concentration range of 10-50 µg/mL, the most optimal mass ratio of adsorbates to adsorbents was 1:300, pH 6, and a temperature of 25 °C. Thus, MMT-STA could be used as an efficient adsorbent for deconta×ating water of carbamazepine, ibuprofen, and paracetamol.


Subject(s)
Bentonite/chemistry , Clay/chemistry , Pharmaceutical Preparations/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Kinetics , Temperature , Water Purification
8.
Pharmaceutics ; 13(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34452190

ABSTRACT

Polycations are an essential part of layer-by-layer (LbL)-assembled drug delivery systems, especially for gene delivery. In addition, they are used for other related applications, such as cell surface engineering. As a result, an assessment of the cytotoxicity of polycations and elucidation of the mechanisms of polycation toxicity is of paramount importance. In this study, we examined in detail the effects of a variety of water-soluble, positively charged synthetic polyelectrolytes on in vitro cytotoxicity, cell and nucleus morphology, and monolayer expansion changes. We have ranked the most popular cationic polyelectrolytes from the safest to the most toxic in relation to cell cultures. 3D cellular cluster formation was disturbed by addition of polyelectrolytes in most cases in a dose-dependent manner. Atomic force microscopy allowed us to visualize in detail the structures of the polyelectrolyte-DNA complexes formed due to electrostatic interactions. Our results indicate a relationship between the structure of the polyelectrolytes and their toxicity, which is necessary for optimization of drug and gene delivery systems.

9.
Molecules ; 26(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808134

ABSTRACT

Fly ash produced during coal combustion is one of the major sources of air and water pollution, but the data on the impact of micrometer-size fly ash particles on human cells is still incomplete. Fly ash samples were collected from several electric power stations in the United States (Rockdale, TX; Dolet Hill, Mansfield, LA; Rockport, IN; Muskogee, OK) and from a metallurgic plant located in the Russian Federation (Chelyabinsk Electro-Metallurgical Works OJSC). The particles were characterized using dynamic light scattering, atomic force, and hyperspectral microscopy. According to chemical composition, the fly ash studied was ferro-alumino-silicate mineral containing substantial quantities of Ca, Mg, and a negligible concentration of K, Na, Mn, and Sr. The toxicity of the fly ash microparticles was assessed in vitro using HeLa cells (human cervical cancer cells) and Jurkat cells (immortalized human T lymphocytes). Incubation of cells with different concentrations of fly ash resulted in a dose-dependent decrease in cell viability for all fly ash variants. The most prominent cytotoxic effect in HeLa cells was produced by the ash particles from Rockdale, while the least was produced by the fly ash from Chelyabinsk. In Jurkat cells, the lowest toxicity was observed for fly ash collected from Rockport, Dolet Hill and Muscogee plants. The fly ash from Rockdale and Chelyabinsk induced DNA damage in HeLa cells, as revealed by the single cell electrophoresis, and disrupted the normal nuclear morphology. The interaction of fly ash microparticles of different origins with cells was visualized using dark-field microscopy and hyperspectral imaging. The size of ash particles appeared to be an important determinant of their toxicity, and the smallest fly ash particles from Chelyabinsk turned out to be the most cytotoxic to Jukart cells and the most genotoxic to HeLa cells.


Subject(s)
Air Pollutants/toxicity , Cell Survival , Coal Ash/toxicity , DNA Damage , Particulate Matter/analysis , Water Pollutants/toxicity , HeLa Cells , Humans , Jurkat Cells , Particle Size
10.
J Biotechnol ; 325: 25-34, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33285149

ABSTRACT

Fe3O4 nanoparticles were obtained by chemical coprecipitation of iron chloride and sodium hydroxide. The morphology and sizes of the obtained nanoparticles were characterized using laser Doppler velocimetry, transmission electron and atomic force microscopy. Then the nanoparticles were stabilized by three polycations (polyethylenimine (PEI), poly(allylamine hydrochloride) (PAH), poly(diallyldimethylammonium chloride) (PDADMAC)) to increase their biocompatibility. The cytotoxicity of the obtained polymer-stabilized nanoparticles was studied using a human lung carcinoma cell line (A549). The biodistribution of nanoparticles stabilized by polycations in human lung carcinoma cells was analyzed by transmission electron microscopy, and the toxicity of nanomaterials was evaluated using toxicity tests and flow cytometry. As a result, the most biocompatible nanoparticle-biopolymer complex was identified. PAH stabilized magnetic nanoparticles demonstrated the best biocompatibility, and the PEI-magnetic nanoparticle complex was the most toxic.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , A549 Cells , Cell Survival , Humans , Magnetite Nanoparticles/toxicity , Polyelectrolytes , Polyethyleneimine/toxicity , Tissue Distribution
11.
Sci Total Environ ; 761: 143209, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33160671

ABSTRACT

The environmental hazards of oil spills cannot be underestimated. Bioremediation holds promise among various approaches to tackle oil spills in soils and sediments. In particular, using oil-degrading bacteria is an efficient and self-regulating way to remove oil spills. Using animals for oil spills remediation is in its infancy, mostly due to the lack of efficient oil-degrading capabilities in eukaryotes. Here we show that Caenorhabditis elegans nematodes survive for extended periods (up to 22 days) on pure crude oil diet. Moreover, we report for the first time the use of Alcanivorax borkumensis hydrocarbonoclastic bacteria for colonisation of C. elegans intestines, which allows for effective digestion of crude oil by the nematodes. The worms fed and colonised by A. borkumensis demonstrated the similar or even better longevity, resistance against oxidative and thermal stress and reproductivity as those animals fed with Escherichia coli bacteria (normal food). Importantly, A. borkumensis-carrying nematodes were able to accumulate oil droplet from oil-contaminated soils. Artificial colonisation of soil invertebrates with oil-degrading bacteria will be an efficient way to distribute microorganisms in polluted soil, thus opening new avenues for oil spills zooremediation.


Subject(s)
Alcanivoraceae , Petroleum Pollution , Petroleum , Animals , Biodegradation, Environmental , Caenorhabditis elegans , Intestines
12.
Sci Rep ; 10(1): 14849, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908166

ABSTRACT

In mixed infections, the bacterial susceptibility differs significantly compared to monocultures of bacteria, and generally the concentrations of antibiotics required for the treatment increases drastically. For S. aureus and P. aeruginosa dual species biofilms, it has been numerously reported that P. aeruginosa decreases S. aureus susceptibility to a broad range of antibiotics, including beta-lactams, glycopeptides, aminoglycosides, macrolides, while sensitizes to quinolones via secretion of various metabolites. Here we show that S. aureus also modulates the susceptibility of P. aeruginosa to antibiotics in mixed cultures. Thus, S. aureus-P. aeruginosa consortium was characterized by tenfold increase in susceptibility to ciprofloxacin and aminoglycosides compared to monocultures. The same effect could be also achieved by the addition of cell-free culture of S. aureus to P. aeruginosa biofilm. Moreover, similar increase in antibiotics efficacy could be observed following addition of S. aureus suspension to the P. aeruginosa mature biofilm, compared to P. aeruginosa monoculture, and vice versa. These findings open promising perspectives to increase the antimicrobial treatment efficacy of the wounds infected with nosocomial pathogens by the transplantation of the skin residential microflora.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Resistance, Bacterial , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Symbiosis/drug effects
13.
Molecules ; 25(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759785

ABSTRACT

Complexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na2, ADP Na3, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy. The study revealed that binding of different nucleotides to the nanoclay varied but was low both in the presence and absence of MgCl2, while MgCl2 facilitated significantly the binding of longer molecules such as DNA and polyAU. Modification of the nanotubes with DNA and nucleotide species was further confirmed by measurements of ζ-potentials. DNA-Mg-modified nanotubes were characterized using transmission electron (TEM), atomic force (AFM) and hyperspectral microscopies. Thermogravimetric analysis corroborated the sorption of DNA by the nanotubes, and the presence of DNA on the nanotube surface was indicated by changes in the surface adhesion force measured by AFM. DNA bound by halloysite in the presence of MgCl2 could be partially released after addition of phosphate buffered saline. DNA binding and release from halloysite nanotubes was tested in the range of MgCl2 concentrations (10-100 mM). Even low MgCl2 concentrations significantly increased DNA sorption to halloysite, and the binding was leveled off at about 60 mM. DNA-Mg-modified halloysite nanotubes were used for obtaining a regular pattern on a glass surface by evaporation induced self-assembly process. The obtained spiral-like pattern was highly stable and resisted dissolution after water addition. Our results encompassing modification of non-toxic clay nanotubes with a natural polyanion DNA will find applications for construction of gene delivery vehicles and for halloysite self-assembly on various surfaces (such as skin or hair).


Subject(s)
Clay/chemistry , DNA/chemistry , Nanotubes/chemistry , Nucleotides/chemistry , Polyelectrolytes/chemistry , Mechanical Phenomena , Nanotubes/ultrastructure , Thermodynamics , Ultrasonic Waves
14.
Article in English | MEDLINE | ID: mdl-32528938

ABSTRACT

Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelial colorectal adenocarcinoma (Caco-2) and human colon carcinoma (HCT116) cells proliferative activity. After treatment of Caco-2 cells with prodigiosin-loaded halloysite nanotubes, we have observed a disorganization of the F-actin structure. Comparison of this effects on malignant (Caco-2, HCT116) and non-malignant (MSC, HSF) cells suggests the selective cytotoxic and genotoxic activity of prodigiosin-HNTs nanoformulation.

15.
ACS Appl Mater Interfaces ; 12(21): 24348-24362, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32372637

ABSTRACT

We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions and the nanotube loaded with this protein were investigated. Above the keratin isoelectric point (pH = 4), the protein adsorption into the positive halloysite lumen is favored because of the electrostatic attractions. The ζ-potential magnitude of these core-shell particles increased from -35 (in pristine form) to -43 mV allowing for an enhanced colloidal stability (15 h at pH = 6). This keratin-clay tubule nanocomposite was used for the immersion treatment of hair. Three-dimensional-measuring laser scanning microscopy demonstrated that 50-60% of the hair surface coverage can be achieved with 1 wt % suspension application. Hair samples have been exposed to UV irradiation for times up to 72 h to explore the protection capacity of this coating by monitoring the cysteine oxidation products. The nanocomposites of halloysite and keratin prevent the deterioration of human hair as evident by significant inhibition of cysteic acid. The successful hair structure protection was also visually confirmed by atomic force microscopy and dark-field hyperspectral microscopy. The proposed formulation represents a promising strategy for a sustainable medical coating on the hair, which remediates UV irradiation stress.


Subject(s)
Clay/chemistry , Hair/drug effects , Keratins/chemistry , Nanocomposites/chemistry , Radiation-Protective Agents/chemistry , Adult , Female , Hair/radiation effects , Humans , Keratins/radiation effects , Nanocomposites/radiation effects , Nanotubes/chemistry , Nanotubes/radiation effects , Radiation-Protective Agents/radiation effects , Ultraviolet Rays
16.
Beilstein J Nanotechnol ; 10: 1818-1825, 2019.
Article in English | MEDLINE | ID: mdl-31579070

ABSTRACT

Cell surface engineering, as a practical manifestation of nanoarchitectonics, is a powerful tool to modify and enhance properties of live cells. In turn, cells may serve as sacrificial templates to fabricate cell-mimicking materials. Herein we report a facile method to produce cell-recognising silica imprints capable of the selective detection of human cells. We used HeLa cells to template silica inorganic shells doped with halloysite clay nanotubes. The shells were destroyed by sonication resulting in the formation of polydisperse hybrid imprints that were used to recognise HeLa cells in liquid media supplemented with yeast. We believe that methodology reported here will find applications in biomedical and clinical research.

17.
Medchemcomm ; 10(8): 1457-1464, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31534660

ABSTRACT

The development of novel nanoscale vehicles for drug delivery promotes the growth of interest in investigations of interaction between nanomaterials. In this paper, we report the in vitro studies of eukaryotic cell physiological response to incubation with graphene oxide and planar kaolin nanoclay. Graphene family materials, including graphene oxide (GO), hold promise for numerous applications due to their unique electronic properties. However, graphene oxide reveals toxicity to some cell lines through an unidentified mechanism. Thus, methods and agents reducing the toxicity of graphene oxide can widen its practical application. We used a colorimetric test, flow cytometry and cell index assay methods to evaluate the effects of separate and combined application of graphene oxide and kaolin on mammalian cells. We have shown that the joint application of graphene oxide and kaolin reduced the negative effects of graphene by almost 20%, most likely because of coagulation of the nanoparticles with each other, which was detected by atomic force microscopy.

18.
ACS Appl Mater Interfaces ; 11(26): 23050-23064, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31180643

ABSTRACT

Alterations in the normal gastrointestinal microbial community caused by unhealthy diet, environmental factors, and antibiotic overuse may severely affect human health and well-being. Novel antimicrobial drug formulations targeting pathogenic microflora while not affecting or even supporting symbiotic microflora are urgently needed. Here we report fabrication of a novel antimicrobial nanocontainer based on halloysite nanotubes loaded with curcumin and protected with a dextrin outer layer (HNTs+Curc/DX) and its effective use to suppress the overgrowth of pathogenic bacteria in Caenorhabditis elegans nematodes. Nanocontainers have been obtained using vacuum-facilitated loading of hydrophobic curcumin into halloysite lumens. We have applied UV-vis and infrared spectroscopy, thermogravimetry and microscopy to characterize the HNTs+Curc/DX nanocontainers. In experiments in vitro we found that HNTs+Curc/DX effectively suppressed the growth of Serratia marcescens cells, whereas Escherichia coli bacteria were not affected. We applied HNTs+Curc/DX nanocontainers to alleviate the S. marcescens infection in C. elegans nematodes in vivo. The nematodes ingest HNTs+Curc/DX at 4-6 ng per worm, which results in improvement of the nematodes' fertility and life expectancy. Remarkably, treatment of S. marcescens-infected nematodes with HNTs+Curc/DX nanocontainers completely restored the longevity, demonstrating the enhanced bioavailability of hydrophobic curcumin. We believe that our results reported here open new avenues for fabrication of effective antimicrobial nanoformulations based on hydrophobic drugs and clay nanotubes.


Subject(s)
Anti-Infective Agents/pharmacology , Caenorhabditis elegans/drug effects , Curcumin/pharmacology , Drug Delivery Systems , Aluminum Silicates/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacokinetics , Caenorhabditis elegans/microbiology , Clay/chemistry , Curcumin/chemistry , Dextrins/chemistry , Humans , Nanotubes/chemistry , Thermogravimetry
19.
Int J Mol Sci ; 20(3)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736278

ABSTRACT

Staphylococcus aureus causes various infectious diseases, from skin impetigo to life-threatening bacteremia and sepsis, thus appearing an important target for antimicrobial therapeutics. In turn, the rapid development of antibiotic resistance and biofilm formation makes it extremely robust against treatment. Here, we unravel the molecular mechanism of the antimicrobial activity of the recently unveiled F105 consisting of three pharmacophores: chlorinated 2(5H)-furanone, sulfone, and l-menthol moieties. F105 demonstrates highly selective activity against Gram-positive bacteria and biofilm-embedded S. aureus and exhibits low risk of resistance development. We show explicitly that the fluorescent analogue of F105 rapidly penetrates into Gram-positive bacteria independently of their cell integrity and viability and accumulates there. By contrast, Gram-negative bacteria remain impermeable and, therefore, insusceptible to F105. Apparently, in bacterial cells, F105 induces reactive oxygen species (ROS) formation and nonspecifically interacts with a number of proteins, including ROS-utilizing ones. Using native and 2D PAGE, we confirm that F105 changes the charge of some proteins by either oxidation or direct interaction with them. Therefore, it seems justified to conclude that being simultaneously a ROS inducer and damaging proteins responsible for ROS utilization, F105 impairs the cellular anti-ROS defense representing a prospective ROS-inducing antibacterial agent.


Subject(s)
Anti-Bacterial Agents/pharmacology , Furans/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Drug Discovery , Furans/chemical synthesis , Furans/chemistry , Humans , Hydrogen Peroxide/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Reactive Oxygen Species/metabolism , Staphylococcus aureus/metabolism
20.
Ultramicroscopy ; 194: 40-47, 2018 11.
Article in English | MEDLINE | ID: mdl-30071372

ABSTRACT

Atomic force microscopy (AFM), a powerful tool in interdisciplinary biomedical research, has been applied here to investigate the surface of live nematodes epicuticle. We have used AFM in PeakForce Tapping non-resonant imaging and nanomechanical characterisation mode to investigate and compare the surface features of epicuticle of two free-living microscopic nematodes, Caenorhabditis elegans and Turbatrix aceti. We have successfully immobilised live anesthetized adult nematodes on glass supports using either layer-by-layer-deposited polyelectrolyte films or bioadhesive coatings, which allowed for imaging the living nematodes in native environment. We have obtained AFM images and corresponding nanomechanical maps of annular rings and furrows, demonstrating the differences in topography and structure between the species. Our results demonstrate that AFM in PeakForce Tapping mode can be used to image and characterise surfaces of relatively-large live immobilised multicellular organisms, which can be further applied to a number of invertebrates.


Subject(s)
Caenorhabditis elegans/ultrastructure , Nematoda/ultrastructure , Rhabditoidea/ultrastructure , Animals , Glass/chemistry , Microscopy, Atomic Force/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...