Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Exp Clin Cancer Res ; 42(1): 26, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670473

ABSTRACT

BACKGROUND: Individuals with certain chronic inflammatory lung diseases have a higher risk of developing lung cancer (LC). However, the underlying mechanisms remain largely unknown. Here, we hypothesized that chronic exposure to house dust mites (HDM), a common indoor aeroallergen associated with the development of asthma, accelerates LC development through the induction of chronic lung inflammation (CLI).  METHODS: The effects of HDM and heat-inactivated HDM (HI-HDM) extracts were evaluated in two preclinical mouse models of LC (a chemically-induced model using the carcinogen urethane and a genetically-driven model with oncogenic KrasG12D activation in lung epithelial cells) and on murine macrophages in vitro. Pharmacological blockade or genetic deletion of the Nod-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, caspase-1, interleukin-1ß (IL-1ß), and C-C motif chemokine ligand 2 (CCL2) or treatment with an inhaled corticosteroid (ICS) was used to uncover the pro-tumorigenic effect of HDM.  RESULTS: Chronic intranasal (i.n) instillation of HDM accelerated LC development in the two mouse models. Mechanistically, HDM caused a particular subtype of CLI, in which the NLRP3/IL-1ß signaling pathway is chronically activated in macrophages, and made the lung microenvironment conducive to tumor development. The tumor-promoting effect of HDM was significantly decreased by heat treatment of the HDM extract and was inhibited by NLRP3, IL-1ß, and CCL2 neutralization, or ICS treatment. CONCLUSIONS: Collectively, these data indicate that long-term exposure to HDM can accelerate lung tumorigenesis in susceptible hosts (e.g., mice and potentially humans exposed to lung carcinogens or genetically predisposed to develop LC).


Subject(s)
Asthma , Lung Neoplasms , Humans , Animals , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroglyphidae , Lung/pathology , Asthma/metabolism , Asthma/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/metabolism , Disease Models, Animal , Tumor Microenvironment
2.
Methods Mol Biol ; 2593: 127-142, 2023.
Article in English | MEDLINE | ID: mdl-36513928

ABSTRACT

Chromogenic immunohistochemistry (IHC) serves as an essential assay for the diagnoses of many diseases including cancer. Single-marker IHC detection is the standard used for clinical diagnostic assays. A technology to stain multiple biomarkers chromogenically on a single tissue will also yield contextual biomarker information. Methods to chromogenically stain multiple biomarkers simultaneously employing antibodies from the same species are limited and require complex protocols. Here we describe both manual and automated protocols using the UltraPlex™ mxIHC technology that allows simultaneous detection of up to three biomarkers on a single tissue using a single heat-induced antigen retrieval step in formaldehyde-fixed paraffin-embedded (FFPE) tissue and using primary antibodies from any species.


Subject(s)
Coloring Agents , Formaldehyde , Paraffin Embedding , Immunohistochemistry , Antibodies , Staining and Labeling , Biomarkers , Tissue Fixation
3.
J Oncol ; 2021: 8292453, 2021.
Article in English | MEDLINE | ID: mdl-33510789

ABSTRACT

We have previously constructed a novel microRNA (miRNA)-based prognostic model and cancer-specific mortality risk score formula to predict survival outcome in oral squamous cell carcinoma (OSCC) patients who are already categorized into "early-stage" by the TNM staging system. A total of 836 early-stage OSCC patients were assigned the mortality risk scores. We evaluated the efficacy of various treatment regimens in terms of survival benefit compared to surgery only in patients stratified into high (risk score ≥0) versus low (risk score <0) mortality risk categories. For the high-risk group, surgery with neck dissection significantly improved the 5-year survival to 75% from 46% with surgery only (p < 0.001); a Cox proportional hazard model on time-to-death demonstrated a hazard ratio of 0.37 for surgery with neck dissection (95% CI: 0.2-0.6; p=0.0005). For the low-risk group, surgery only was the treatment of choice associated with 5-year survival benefit. Regardless of treatment selected, those with risk score ≥2 may benefit from additional therapy to prevent cancer relapse. We also identified hTERT (human telomerase reverse transcriptase) as a gene target common to the prognostic miRNAs. There was 22-fold increase in the hTERT expression level in patients with risk score ≥2 compared to healthy controls (p < 0.0005). Overexpression of hTERT was also observed in the patient-derived OSCC organoid compared to that of normal organoid. The DNA cancer vaccine that targets hTERT-expressing cells currently undergoing rigorous clinical evaluation for other tumors can be repurposed to prevent cancer recurrence in these high-risk early-stage oral cancer patients.

4.
Sci Signal ; 13(632)2020 05 19.
Article in English | MEDLINE | ID: mdl-32430291

ABSTRACT

Cells can store memories of prior experiences to modulate their responses to subsequent stresses, as seen for the protein kinase A (PKA)-mediated general stress response in yeast, which is required for resistance against future stressful conditions. Using microfluidics and time-lapse microscopy, we quantitatively analyzed how the cellular memory of stress adaptation is encoded in single yeast cells. We found that cellular memory was biphasic. Short-lived memory was mediated by trehalose synthase and trehalose metabolism. Long-lived memory was mediated by PKA-regulated stress-responsive transcription factors and cytoplasmic messenger ribonucleoprotein granules. Short- and long-lived memory could be selectively induced by different priming input dynamics. Computational modeling revealed how the PKA-mediated regulatory network could encode previous stimuli into memories with distinct dynamics. This biphasic memory-encoding scheme might represent a general strategy to prepare for future challenges in rapidly changing environments.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Regulatory Networks , Models, Biological , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Cyclic AMP-Dependent Protein Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics
5.
J Biol Chem ; 292(50): 20354-20361, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29123025

ABSTRACT

In the yeast Saccharomyces cerevisiae, the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions.


Subject(s)
MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Amino Acid Substitution , Cytoskeletal Proteins/agonists , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Enzyme Activation/drug effects , Gene Deletion , Gene Expression Regulation, Bacterial/drug effects , Genes, Reporter/drug effects , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Kinetics , MAP Kinase Signaling System/drug effects , Mating Factor/agonists , Mating Factor/metabolism , Membrane Proteins/agonists , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mutation , Peptide Fragments/agonists , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Pheromones/pharmacology , Protein Transport/drug effects , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/agonists , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Single-Cell Analysis
6.
J Biol Chem ; 292(30): 12366-12372, 2017 07 28.
Article in English | MEDLINE | ID: mdl-28637875

ABSTRACT

Information about environmental stimuli often can be encoded by the dynamics of signaling molecules or transcription factors. In the yeast Saccharomyces cerevisiae, different types of stresses induce distinct nuclear translocation dynamics of the general stress-responsive transcription factor Msn2, but the underlying mechanisms remain unclear. Using deterministic and stochastic modeling, we reproduced in silico the different dynamic responses of Msn2 to glucose limitation and osmotic stress observed in vivo and found that a positive feedback loop on protein kinase A mediated by the AMP-activated protein kinase Snf1 is coupled with a negative feedback loop to generate the characteristic pulsatile dynamics of Msn2. The model predicted that the stimulus-specific positive feedback loop could be responsible for the difference between Msn2 dynamics induced by glucose limitation and osmotic stress. This prediction was further verified experimentally by time-lapse microscopic examinations of the snf1Δ strain. In this mutant lacking the Snf1-mediated positive feedback loop, Msn2 responds similarly to glucose limitation and osmotic stress, and its pulsatile translocation is largely abrogated. Our combined computational and experimental analysis reveals a regulatory mechanism by which cells can encode information about environmental cues into distinct signaling dynamics through stimulus-specific network architectures.


Subject(s)
DNA-Binding Proteins/metabolism , Feedback, Physiological , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism
7.
Elife ; 52016 09 30.
Article in English | MEDLINE | ID: mdl-27690227

ABSTRACT

Many transcription factors co-express with their homologs to regulate identical target genes, however the advantages of such redundancies remain elusive. Using single-cell imaging and microfluidics, we study the yeast general stress response transcription factor Msn2 and its seemingly redundant homolog Msn4. We find that gene regulation by these two factors is analogous to logic gate systems. Target genes with fast activation kinetics can be fully induced by either factor, behaving as an 'OR' gate. In contrast, target genes with slow activation kinetics behave as an 'AND' gate, requiring distinct contributions from both factors, upon transient stimulation. Furthermore, such genes become an 'OR' gate when the input duration is prolonged, suggesting that the logic gate scheme is not static but rather dependent on the input dynamics. Therefore, Msn2 and Msn4 enable a time-based mode of combinatorial gene regulation that might be applicable to homologous transcription factors in other organisms.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , Transcription, Genetic , Microfluidics , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...