Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560761

ABSTRACT

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Subject(s)
Antineoplastic Agents , Photochemotherapy , Porphobilinogen/analogs & derivatives , Prodrugs , Humans , Boron/pharmacology , Red Light , Coloring Agents , Prodrugs/pharmacology , Cobalt/pharmacology , Photosensitizing Agents/radiation effects , Antineoplastic Agents/radiation effects , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Singlet Oxygen/metabolism , Light
2.
Chem Asian J ; 18(21): e202300667, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37706570

ABSTRACT

Cisplatin-derived platinum(II) complexes [Pt(NH3 )2 (pacac)](NO3 ) (1, DPP-Pt) and [Pt(NH3 )2 (Acac-RB)](NO3 ) (2, Acacplatin-RB), where Hpacac is 1,3-diphenyl-1,3-propanedione and HAcac-RB is a red-light active distyryl-BODIPY-appended acetylacetone ligand, are prepared, characterized and their photodynamic therapy (PDT) activity studied (RB abbreviated for red-light BODIPY). Complex 2 displayed an intense absorption band at λ=652 nm (ϵ=7.3×104  M-1  cm-1 ) and 601 nm (ϵ=3.1×104  M-1  cm-1 ) in 1 : 1 DMSO-DPBS (Dulbecco's Phosphate Buffered Saline). Its emission profile includes a broad maximum at ~673 nm (λex =630 nm). The fluorescence quantum yield (ΦF ) of HAcac-RB and 2 are 0.19 and 0.07, respectively. Dichlorodihydrofluorescein diacetate and 1,3-diphenylisobenzofuran assay of complex 2 indicated photogeneration of singlet oxygen (ΦΔ : 0.36) as reactive oxygen species (ROS). Light irradiation caused only minor extent of ligand release forming chemo-active cisplatin analogue. The complex showed ~70-100 fold enhancement in cytotoxicity on light exposure in A549 lung cancer cells and MDA-MB-231 multidrug resistant breast cancer cells, giving half maximal inhibitory concentration (IC50 ) of 0.9-1.8 µM. Confocal imaging showed its mitochondrial localization and complex 2 exhibited anti-metastasis properties. Immunostaining of ß-tubulin and Annexin V-FITC/propidium iodide staining displayed complex 2 induced photo-selective microtubule rupture and cellular apoptosis, respectively.


Subject(s)
Photochemotherapy , Platinum , Boron , Photosensitizing Agents/pharmacology , Cisplatin , Ligands , Light , Mitochondria
3.
Dalton Trans ; 52(37): 13339-13350, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37671587

ABSTRACT

A platinum(IV) prodrug, cis,cis,trans-[Pt(NH3)2Cl2(biotin)(L)] (1), derived from cisplatin, where HL is the PEGylated red-light active boron-dipyrromethene (BODIPY) ligand, was synthesized, characterized and its photocytotoxicity evaluated. The complex showed a near-IR absorption band at 653 nm (ε ∼9.19 × 104 M-1 cm-1) in dimethyl sulfoxide and Dulbecco's phosphate-buffered saline (1 : 1 v/v) at pH 7.2. When excited at 630 nm, it showed an emission band at 677 nm in DMSO with a fluorescence quantum yield of 0.13. The 1,3-diphenylisobenzofuran titration experiment gave a singlet oxygen quantum yield (ΦΔ) of ∼0.32. A mechanistic DNA photocleavage study revealed singlet oxygen as the reactive oxygen species (ROS). The complex with biotin and PEGylated-distyryl-BODIPY showed significantly higher cellular uptake in A549 cancer cells as compared to non-cancerous Beas-2B cells from flow cytometry, indicating selectivity towards cancer cells. A dichlorodihydrofluorescein diacetate assay showed cellular ROS generation. Confocal images revealed predominant internalization in the mitochondria. The prodrug showed remarkable photodynamic therapy (PDT) activity in cancerous A549 and multidrug-resistant MDA-MB-231 cells with a high photocytotoxicity index value (half-maximal inhibitory concentration (IC50): 0.61-1.54 µM in red light), while being non-toxic in the dark. The chemo-PDT activity was significantly less in non-tumorigenic lung epithelial cells (Beas-2B). The prodrug effectively triggered cellular apoptosis, which was confirmed by the Annexin V-FITC/propidium iodide assay, and the alteration of the mitochondrial membrane potential was substantiated by the JC-1 dye assay. The ß-tubulin immunofluorescence assay confirmed that incubating the cells with a light-treated complex resulted in the rapture of the cytoskeletal structure and the formation of apoptotic bodies. The results demonstrate that the prodrug triggered apoptosis via DNA damage, a reduction in mitochondrial function and disruption of the cytoskeletal framework.


Subject(s)
Prodrugs , Prodrugs/pharmacology , Platinum , Biotin , Boron/pharmacology , Reactive Oxygen Species , Singlet Oxygen , Mitomycin , Polyethylene Glycols
4.
J Cataract Refract Surg ; 49(9): 976-981, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37343278

ABSTRACT

PURPOSE: To compare peak surge and surge duration time after occlusion break, incision leakage compensation, and passive vacuum for 2 phacoemulsification systems. SETTING: Carl Zeiss Meditec AG, Oberkochen, Germany. DESIGN: Laboratory study. METHODS: A spring-eye model was used to test Alcon Centurion Vision and Zeiss Quatera 700 systems. Peak surge and duration was measured after an occlusion break. Quatera tested in flow and vacuum priority modes. Vacuum limits ranged from 300 to 700 mm Hg with intraocular pressure (IOP) set at 30 mm Hg, 55 mm Hg, and 80 mm Hg. IOP vs incision leakage rates of 0 to 15 cc/min and passive vacuum were measured. RESULTS: At 30 mm Hg IOP set point and vacuum limits ranging 300 to 700 mm Hg, the surge duration time after occlusion break ranged 419 to 1740 milliseconds (ms) for Centurion, 284 to 408 ms for Quatera in the flow mode, and 282 to 354 ms for Quatera in the vacuum mode. At 55 mm Hg, values ranged 268 to 1590 ms for Centurion, 258 to 471 ms for Quatera in the flow mode, and 239 to 284 ms for Quatera in the vacuum mode. At 80 mm Hg, values were 243 to 1520 ms for Centurion, 238 to 314 ms for Quatera in the flow mode, and 221 to 279 ms in the vacuum mode. Centurion exhibited slightly less peak surge than the Quatera. At 55 mm Hg: incision leakage rates 0 to 15 cc/min, Quatera held the IOP within ±2 mm Hg of target; Centurion was unable to hold IOP target allowing a 11.7 mm Hg decrease with 32% higher passive vacuum. CONCLUSIONS: Quatera demonstrated slightly higher surge peak values and notably shorter surge duration times after occlusion break than Centurion. Quatera demonstrated better incision leakage compensation and lower passive vacuum than Centurion.


Subject(s)
Eye Diseases , Phacoemulsification , Humans , Intraocular Pressure , Anterior Chamber/surgery , Vacuum , Tonometry, Ocular , Eye Diseases/surgery
5.
J Inorg Biochem ; 244: 112226, 2023 07.
Article in English | MEDLINE | ID: mdl-37105008

ABSTRACT

To overcome the drawbacks associated with chemotherapeutic and porphyrin-based photodynamic therapy (PDT) agents, the use of BODIPY (boron-dipyrromethene) scaffold has gained prominence in designing a new generation of photosensitizers-cum-cellular imaging agents. However, their poor cell permeability and limited solubility in aqueous medium inhibits the in-vitro application of their organic form. This necessitates the development of metal-BODIPY conjugates with improved physiological stability and enhanced therapeutic efficacy. We have designed two iron(III)-BODIPY conjugates, [Fe(L1/2)(L3)Cl] derived from benzyl-dipicolylamine and its glycosylated analogue along with a BODIPY-tagged catecholate. The complexes showed intense absorption bands (ε âˆ¼ 55,000 M-1 cm-1) and demonstrated apoptotic PDT activity upon red-light irradiation (30 J/cm2, 600-720 nm). The complex with singlet oxygen quantum yield value of ∼0.34 gave sub-micromolar IC50 (half-maximal inhibitory concentration) value (∼0.08 µM) in both HeLa and H1299 cancer cells with a photocytotoxicity index value of >1200. Both the complexes were found to have significantly lower cytotoxic effects in non-cancerous HPL1D (human peripheral lung epithelial) cells. Singlet oxygen was determined to be the prime reactive oxygen species (ROS) responsible for cell damage from pUC19 DNA photo-cleavage studies, 1,3-diphenylisobenzofuran and SOSG (Singlet Oxygen Sensor Green) assays. Cellular imaging studies showed excellent fluorescence from complex 2 within 4 h, with localization in lysosomes. Significant drug accumulation into the core of 3D multicellular tumor spheroids was observed within 8 h from intense in-vitro emission. The complexes exemplify iron-based targeted PDT agents and show promising results as potential transition metal-based drugs for ROS mediated red light photocytotoxicity with low dosage requirement.


Subject(s)
Antineoplastic Agents , Photochemotherapy , Humans , Boron/pharmacology , Singlet Oxygen , Reactive Oxygen Species , Iron , Light , Photosensitizing Agents/radiation effects , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Antineoplastic Agents/pharmacology , Lysosomes
6.
RSC Med Chem ; 13(12): 1526-1539, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36561074

ABSTRACT

A cisplatin-based platinum(iv) prodrug, [Pt(NH3)2Cl2(OH)(L 1 )], having L 1 as a red-light active boron-dipyrromethene (BODIPY) pendant, was synthesized and characterized and its application as a chemo-cum-photodynamic therapy agent was studied. Me-L 1 as the ligand precursor is structurally characterized. The complex displayed an intense absorption band near 650 nm (ε ∼ 8.8 × 104 dm3 mol-1 cm-1) in 1 : 1 (v/v) DMSO/DPBS. It showed an emission band at 674 nm (λ ex = 630 nm) with a fluorescence quantum yield (Φ F) value of 0.37. In red light (600-720 nm), it generated singlet oxygen as evidenced from the 1,3-diphenylisobenzofuran (DPBF) titration experiment giving a singlet oxygen quantum yield (Φ Δ) value of 0.28 in DMSO. The mechanistic pUC19 DNA photocleavage study and singlet oxygen sensor green (SOSG) assay ascertained its ability to generate singlet oxygen in both extracellular and intracellular media by a type-II photo-process. The complex exhibited high stability in the dark, but on red-light irradiation, it displayed rapid activation in the presence of a reducing environment. It displayed remarkable apoptotic photocytotoxicity with half-maximal inhibitory concentration (IC50) ranging from 0.58 to 0.76 µM in human cervical cancer (HeLa) and breast cancer (MCF-7) cells with a respective photo-cytotoxicity index value of >172 and >131. The photodynamic activity was significantly less in non-cancerous human peripheral lung epithelial (HPL1D) cells. The emissive complex showed localization in the mitochondria and endoplasmic reticulum (ER) with a similar Pearson's correlation coefficient value, making it a dual organelle-targeted therapeutic agent. JC-1, fluo-4-AM and annexin V-FITC/propidium iodide assays in HeLa cells showed cellular apoptosis by arresting cells in the sub-G1 phase via mitochondrial dysfunction and ER stress.

7.
Opt Express ; 30(15): 27140-27148, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236891

ABSTRACT

Light emitting diodes (LEDs) have become a major source of lighting conditions. The increased prevalence of LED light sources introduces new concerns for the spectral effects of positive dysphotopsia (PD) or glare type photic phenomena for pseudo-phakic patients with intraocular lenses (IOLs). A significant amount of work has been published in the area of spectral discomfort and sensitivity of LEDs as well as automotive lighting. The wavelength dependence or spectral properties of PD due to LEDs for IOLs has not been reported. This study, to our knowledge, is the first one to assess the glare characteristics of four commercially available IOL models with different material types and design features using an optical bench and non-sequential ray trace simulations with LEDs of different wavelengths. A novel approach of representing the reflected and transmitted IOL glare utilizing Fresnel coefficients is found to be in close agreement with the measurements.


Subject(s)
Glare , Lenses, Intraocular , Humans , Lenses, Intraocular/adverse effects , Prosthesis Design , Vision Disorders/diagnosis , Vision Disorders/etiology
8.
Neuroimage ; 264: 119699, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36272672

ABSTRACT

The potential of normative modeling to make individualized predictions from neuroimaging data has enabled inferences that go beyond the case-control approach. However, site effects are often confounded with variables of interest in a complex manner and can bias estimates of normative models, which has impeded the application of normative models to large multi-site neuroimaging data sets. In this study, we suggest accommodating for these site effects by including them as random effects in a hierarchical Bayesian model. We compared the performance of a linear and a non-linear hierarchical Bayesian model in modeling the effect of age on cortical thickness. We used data of 570 healthy individuals from the ABIDE (autism brain imaging data exchange) data set in our experiments. In addition, we used data from individuals with autism to test whether our models are able to retain clinically useful information while removing site effects. We compared the proposed single stage hierarchical Bayesian method to several harmonization techniques commonly used to deal with additive and multiplicative site effects using a two stage regression, including regressing out site and harmonizing for site with ComBat, both with and without explicitly preserving variance caused by age and sex as biological variation of interest, and with a non-linear version of ComBat. In addition, we made predictions from raw data, in which site has not been accommodated for. The proposed hierarchical Bayesian method showed the best predictive performance according to multiple metrics. Beyond that, the resulting z-scores showed little to no residual site effects, yet still retained clinically useful information. In contrast, performance was particularly poor for the regression model and the ComBat model in which age and sex were not explicitly modeled. In all two stage harmonization models, predictions were poorly scaled, suffering from a loss of more than 90% of the original variance. Our results show the value of hierarchical Bayesian regression methods for accommodating site variation in neuroimaging data, which provides an alternative to harmonization techniques. While the approach we propose may have broad utility, our approach is particularly well suited to normative modeling where the primary interest is in accurate modeling of inter-subject variation and statistical quantification of deviations from a reference model.


Subject(s)
Models, Statistical , Neuroimaging , Humans , Bayes Theorem , Brain/diagnostic imaging
9.
Dalton Trans ; 51(27): 10392-10405, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35758169

ABSTRACT

Two multichromophoric homoleptic ruthenium(II) complexes [Ru(tpy-BODIPY)2]Cl2 (complexes 1 and 2, tpy = 4-phenyl-2,2:6,2-terpyridine, BODIPY = boron-dipyrromethene) were prepared, characterized and their phototherapeutic activity and bioimaging properties were studied. The complexes having structural similarity differ only by a phenylethynyl linker, and its overall influence on their physicochemical and photobiological behavior was evaluated. The terpyridine-BODIPY ligand L1 was structurally characterized by X-ray crystallography. The complexes showed intense absorption near 500 nm (ε: ∼1.5 × 105 M-1 cm-1 in DMSO), have a high singlet oxygen quantum yield (ΦΔ: ∼0.6 in DMSO), and displayed low photobleaching thus making them suitable for PDT applications. The complexes showed high DNA binding affinity and induced DNA damage on light activation via multiple types of ROS production. Confocal laser scanning microscopy experiments revealed their incorporation in the cancer cells and complex 1 predominantly accumulated in lysosomes. The complexes displayed a significant PDT effect in cancerous cells with visible light activation with a high photocytotoxicity index (PI) value in HeLa cells. Both type-I and type-II photosensitization processes were involved in the PDT effect. The photodynamic action of complex 2 initiated cellular apoptosis. Finally, their diagnostic potential was evaluated against clinically relevant 3D multicellular tumor spheroids (MCTs).


Subject(s)
Coordination Complexes , Photochemotherapy , Ruthenium , Boron Compounds , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Dimethyl Sulfoxide , HeLa Cells , Humans , Light , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology
13.
Inorg Chem ; 61(18): 6837-6851, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35471858

ABSTRACT

Cobalt(III) complexes [Co(TPA)(L1)](ClO4)2 (1), [Co(4-COOH-TPA)(L1)](ClO4)2 (2), [Co(TPA)(L2)]Cl2 (3), and [Co(4-COOH-TPA)(L2)]Cl2 (4) having acetylacetonate-linked boron-dipyrromethene ligands (L1, acac-BODIPY; L2, acac-diiodo-BODIPY) were prepared and characterized, and their utility as bioimaging and phototherapeutic agents was evaluated (TPA, tris-(2-pyridylmethyl)amine; 4-COOH-TPA, 2-((bis-(2-pyridylmethyl)amino)methyl)isonicotinic acid). HL1, HL2, and complex 1 were structurally characterized by X-ray crystallography. Complexes 1 and 2 on photoactivation or in a reducing environment (excess GSH, ascorbic acid, and 3-mercaptopropionic acid) released the acac-BODIPY ligand. They exhibited strong absorbance near 501 nm (ε ∼ (5.2-5.8) × 104 M-1 cm-1) and emission bands near 513 nm (ΦF ∼ 0.13, λex = 490 nm) in dimethyl sulfoxide (DMSO). Complexes 3 and 4 with absorption maxima at ∼536 and ∼538 nm (ε ∼ (1.2-1.8) × 104 M-1 cm-1), respectively, afforded high singlet oxygen quantum yield (ΦΔ âˆ¼ 0.79) in DMSO. Complexes 1-4 showed Co(III)-Co(II) redox responses near -0.2 V versus saturated calomel electrode (SCE) in dimethylformamide (DMF)-0.1 M tetrabutylammonium perchlorate (TBAP). The photocleavage of pUC19 DNA by complex 4 revealed the formation of both singlet oxygen and superoxide anion radicals as the reactive oxygen species (ROS). Confocal fluorescence microscopy showed the selective accumulation of complex 1 in the endoplasmic reticulum (ER) in A-549 cells. Complex 4 exhibited a high phototherapeutic index value (PI > 7000) in HeLa cancer cells (IC50 ∼ 0.007 µM in visible light of 400-700 nm, total dose ∼5 J cm-2). The ancillary ligands in the complexes demonstrated a structure-activity relationship and modulated the Co(III)-Co(II) redox potential, the complex solubility, acac-BODIPY ligand release kinetics, and phototherapeutic efficacy.


Subject(s)
Antineoplastic Agents , Photochemotherapy , Antineoplastic Agents/chemistry , Boron Compounds , Cobalt/pharmacology , Dimethyl Sulfoxide , Hydroxybutyrates , Ligands , Pentanones , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Singlet Oxygen
14.
Soft Matter ; 18(17): 3358-3368, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35411357

ABSTRACT

We describe photo-thermo-mechanical actuation and its dynamics in thin films of a liquid crystal networks (LCN) under near infrared (NIR) illumination through experiments and simulations. Splay aligned films of different thicknesses (25 µm to 100 µm) were obtained by crosslinking a mixture of mono-functional and bi-functional liquid crystal monomers. The NIR-driven thermo-mechanical actuation was achieved by adding an NIR dye to the monomer mixture. The absorption of incoming radiation by the dye molecules raises the local temperature of the film causing an order-disorder (nematic-isotropic) transition, thereby resulting in a macroscopic shape change. We have investigated the effect of film thickness, NIR laser power and dye concentration on the tip displacement of the films in a cantilever configuration. The experimental findings and finite element simulation results are in reasonably good quantitative agreement. Despite using lower NIR powers than typically employed, the films show high actuation and large displacements. After achieving saturation in actuation, the films exhibit a flutter behavior which is discussed in light of the observed overshoot in the tip displacement for certain intensities and thicknesses. Finally, using a solar simulator, we also show the visible light response of the film.

16.
Dalton Trans ; 51(10): 3925-3936, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35170587

ABSTRACT

Dipicolylamine (dpa) based platinum(II) complexes [Pt(L1-3)Cl]Cl (1-3), where L2 and L3 are green and red light BODIPY-tagged dpa ligands and L1 is a benzyl derivative of dpa, were synthesized and characterized and their in vitro cytotoxicity was studied. The perchlorate salt of complex 2 was structurally characterized. It showed a PtN3Cl core with a deformed square-planar geometry. At pH 7.2, complexes 2 and 3 showed strong absorption bands at 500 nm (ε ∼6.8 × 104 dm3 mol-1 cm-1) and 653 nm (ε ∼1.0 × 105 dm3 mol-1 cm-1) in a 1 : 1 (v/v) mixture of dimethyl sulfoxide and Dulbecco's phosphate-buffered saline (DMSO/DPBS), respectively. They displayed respective emission bands at 515 and 677 nm having fluorescence quantum yield values of 0.36 and 0.25. Complex 3 generated singlet oxygen, as evidenced from the 1,3-diphenylisobenzofuran titration experiments and mechanistic DNA photocleavage study. It showed high photocytotoxicity in red light (600-720 nm) with half-maximal inhibitory concentration (IC50) values of 1.73 and 2.67 µM in HeLa and A549 cells. The complexes showed significantly reduced chemo-PDT activity in a non-cancerous HPL1D cell line and in the dark. The 2',7'-dichlorofluorescein diacetate assay revealed reactive oxygen species-mediated type-II photodynamic therapy (PDT) activity. Cellular imaging of A549 cancer cells using complexes 2 and 3 revealed their preferential localization in mitochondria and endoplasmic reticulum. The annexin V-FITC/PI assay confirmed apoptotic cell damage. Cell cycle analysis indicated arrest in the G1 phase upon red light irradiation. Pt-DNA adduct formation was proposed from a DNA binding experiment with green light active complex 2 and 9-ethylguanine as a nucleobase from the mass spectral study.


Subject(s)
Amines/chemistry , Boron Compounds/chemistry , Coordination Complexes/chemistry , Photosensitizing Agents/pharmacology , Picolinic Acids/chemistry , Platinum/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Humans , Infrared Rays , Models, Molecular , Molecular Structure , Organelles , Photochemotherapy , Photosensitizing Agents/chemistry , Single-Cell Analysis
17.
Inorg Chem ; 61(3): 1335-1348, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34990135

ABSTRACT

[Pt(RB)(Cur)]NO3 (RBC), [Pt(IRB)(Cur)]NO3 (IRBC), and [Pt(L)(Cur)]NO3 (PBC), where HCur is curcumin, L is 1-benzyl-2-(2-pyridyl)benzimidazole, and RB and IRB are red-light-active non-iodo and diiodo-BODIPY tagged to L, respectively, were synthesized and characterized, and their anticancer activities were studied (BODIPY, boron-dipyrromethene). RBC and IRBC displayed BODIPY-centered absorption bands within 615-635 nm along with the respective curcumin bands at 445 and 492 nm in 10% dimethyl sulfoxide (DMSO)-Dulbecco's phosphate-buffered saline (DPBS). Emission bands were observed at 723 and 845 nm for RBC and IRBC, respectively, in 10% DMSO-DPBS. RBC (ΦΔ, 0.27) and IRBC (ΦΔ, 0.40) generated singlet oxygen in red light (λ = 642 nm) as evidenced from 1,3-diphenylisobenzofuran (DPBF) titrations. The formation of 1O2 from BODIPY and HO• from the curcumin was evidenced from the mechanistic pUC19 DNA photocleavage studies. The BODIPY complexes showed photocytotoxicity in A549, HeLa, and MDA-MB-231 cells while being less toxic in the dark [IC50: 1.3-6.9 µM, red light; 7.2-12.8 µM, 400-700 nm visible light]. The emissive RBC displayed localization in the endoplasmic reticulum (ER). Apoptotic cell death was evidenced from the Annexin-V/fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay and green fluorescence in red light in the Fluo-4 AM assay due to ER stress, and mitochondrial dysfunction was evidenced from the 5,5,6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) assay in A549 cells.


Subject(s)
Antineoplastic Agents/pharmacology , Boron Compounds/pharmacology , Curcumin/pharmacology , Light , Organoplatinum Compounds/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Boron Compounds/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/chemistry , Drug Screening Assays, Antitumor , Humans , Microscopy, Confocal , Organoplatinum Compounds/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry
18.
ACS Appl Mater Interfaces ; 13(49): 59381-59391, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34870984

ABSTRACT

Soft actuators allowing multifunctional, multishape deformations based on single polymer films or bilayers remain challenging to produce. In this contribution, direct ink writing is used for generating patterned actuators, which are in between single- and bilayer films, with multifunctionality and a plurality of possible shape changes in a single object. The key is to use the controlled deposition of a light-responsive liquid crystal ink with direct ink writing to partially cover a foil at strategic locations. We found patterned films with 40% coverage of the passive substrate by an active material outperformed "standard" fully covered bilayers. By patterning the film as two stripes, a range of motions, including left- and right-handed twisting and bending in orthogonal directions, could be controllably induced in the same actuator. The partial coverage also left space for applying liquid crystal inks with other functionalities, exemplified by fabricating a light-responsive green reflective actuator whose reflection can be switched "on" and "off". The results presented here serve as a toolbox for the design and fabrication of patterned actuators with dramatically expanded shape deformation and functionality capabilities.

19.
Inorg Chem ; 60(21): 16178-16193, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34672556

ABSTRACT

A series of multichromophoric ruthenium(II) complexes with the formulation [Ru(tpy-BODIPY)(tpy-R)]Cl2 (1-4), having a heteroleptic Ru(II)-bis-tpy (tpy = 4'-phenyl-2,2':6',2″-terpyridine) moiety covalently linked to a boron-dipyrromethene (BODIPY) pendant, have been prepared and characterized and their application as a phototherapeutic and photodetection agent in cancer therapy has been explored. Ligand L1 with a terpyridine-BODIPY moiety and complex 1 as its PF6 salt (1a) have been structurally characterized by a single-crystal X-ray diffraction study. Complex 1a has a distorted-octahedral RuN6 core with a Ru(II)-bis-terpyridine unit that is covalently linked to one photoactive BODIPY unit. The complexes exhibit strong absorbance near 502 nm (ε ≈ (3.7-7.8) × 104 M-1 cm-1) and high singlet oxygen sensitization ability, giving singlet oxygen quantum yield (ΦΔ) values ranging from 0.57 to 0.75 in DMSO. An emission-based study using complex 4 and Singlet Oxygen Sensor Green (SOSG) displays the formation of singlet oxygen inside the cells and also in the buffer medium upon light irradiation. DNA (pUC19) photocleavage experiments using ROS scavengers/stabilizers reveal photoinduced generation of singlet oxygen by a type-II process and of the superoxide anion radical by a type-I process. Complex 4 having a pendant biotin moiety as a cancer cell targeting group shows high photocytotoxicity with a remarkable phototherapeutic index (PI) value of >1400 in HeLa cancer cells with a low light dose activation (400-700 nm, 2.2 J cm-2). The complexes display reduced activity in noncancerous HPL1D cells. The emission property of the complexes is used for cellular imaging, thus making them suitable as next-generation theranostic PDT agents.


Subject(s)
Photochemotherapy
20.
J Inorg Biochem ; 223: 111526, 2021 10.
Article in English | MEDLINE | ID: mdl-34246120

ABSTRACT

Oxoplatin-B, a platinum(IV) complex [Pt(NH3)2Cl2(L1)(OH)] (1) of 4-methylbenzoic acid (HL1) functionalized with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) was prepared, characterized and its antitumor activity studied. [Pt(NH3)2Cl2(L2)(OH)] (2) of 4-methylbenzoic acid (HL2) was studied as a control. Complex 1 showed an absorption band at 500 nm (ɛ = 4.34 × 104 M-1 cm-1) and an emission band at 515 nm (λex = 488 nm, ΦF = 0.64) in 1% dimethyl sulfoxide/Dulbecco's Modified Eagle's Medium (pH = 7.2). Visible light-induced (400-700 nm) generation of singlet oxygen was evidenced from 1,3-diphenylisobenzofuran titration study. Complex 1 showed photo-induced cytotoxicity in visible light (400-700 nm, 10 J cm-2) against human breast cancer (MCF-7), cervical cancer (HeLa) and lung cancer (A549) cells (IC50: 1.1-3.8 µM) while being less toxic in normal cells. Confocal imaging showed mitochondrial localization with additional evidence from platinum content from isolated mitochondria and 5,5,6,6'-tetrachloro-1,1',3,3' tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) assay. Cellular apoptosis was observed from Annexin-V-FITC (fluorescein isothiocyanate)/propidium iodide assay.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Mitochondria/drug effects , Photosensitizing Agents/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Apoptosis/drug effects , Benzoates/chemical synthesis , Benzoates/pharmacology , Benzoates/radiation effects , Boron Compounds/chemical synthesis , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Cattle , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/radiation effects , DNA/drug effects , DNA Cleavage/drug effects , Drug Screening Assays, Antitumor , Humans , Light , Membrane Potential, Mitochondrial/drug effects , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/radiation effects , Platinum/chemistry , Platinum/radiation effects , Prodrugs/chemical synthesis , Prodrugs/radiation effects , Singlet Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...