Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 37404-37427, 2024 May.
Article in English | MEDLINE | ID: mdl-38777973

ABSTRACT

The aim of this study is to uncover the multifaceted environmental threats posed by Oil Spill Water Pollution (OSWP) originating from tanker terminals situated in the Qeshm and Hormozgan regions of Iran. In this region, water pollution arises from diverse sources, mostly from ruptured pipelines, corroded valves, unforeseen accidents, and aging facilities. The Qeshm Canal and Qeshm Tanker Terminal emerged as pivotal sites for investigation within this study. The focus is directed towards pinpointing vulnerable areas at risk of water contamination and delving into the intricate pathways and impacts associated with oil spills. Utilizing the sophisticated modeling capabilities of the National Oceanic and Atmospheric Administration's (NOAA) GNOME model, the research explores various scenarios extrapolated from seasonal atmospheric and oceanic data through 2022. The findings show the OSWP hazard zones located northeast of Qeshm. Notably, the wind and currents greatly affect how OSWPs are destined and dispersed. This underscores the intricate interplay between environmental factors and spill dynamics. In essence, this study not only sheds light on the imminent environmental threats posed by OSWP but also underscores the critical need for proactive measures and comprehensive strategies to mitigate the adverse impacts on marine ecosystems and coastal communities.


Subject(s)
Environmental Monitoring , Petroleum Pollution , Iran , Water Pollution , Water Pollutants, Chemical/analysis , Models, Theoretical
2.
Global Health ; 20(1): 43, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745248

ABSTRACT

The spread of infectious diseases was further promoted due to busy cities, increased travel, and climate change, which led to outbreaks, epidemics, and even pandemics. The world experienced the severity of the 125 nm virus called the coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization (WHO) in 2019. Many investigations revealed a strong correlation between humidity and temperature relative to the kinetics of the virus's spread into the hosts. This study aimed to solve the riddle of the correlation between environmental factors and COVID-19 by applying RepOrting standards for Systematic Evidence Syntheses (ROSES) with the designed research question. Five temperature and humidity-related themes were deduced via the review processes, namely 1) The link between solar activity and pandemic outbreaks, 2) Regional area, 3) Climate and weather, 4) Relationship between temperature and humidity, and 5) the Governmental disinfection actions and guidelines. A significant relationship between solar activities and pandemic outbreaks was reported throughout the review of past studies. The grand solar minima (1450-1830) and solar minima (1975-2020) coincided with the global pandemic. Meanwhile, the cooler, lower humidity, and low wind movement environment reported higher severity of cases. Moreover, COVID-19 confirmed cases and death cases were higher in countries located within the Northern Hemisphere. The Blackbox of COVID-19 was revealed through the work conducted in this paper that the virus thrives in cooler and low-humidity environments, with emphasis on potential treatments and government measures relative to temperature and humidity. HIGHLIGHTS: • The coronavirus disease 2019 (COIVD-19) is spreading faster in low temperatures and humid area. • Weather and climate serve as environmental drivers in propagating COVID-19. • Solar radiation influences the spreading of COVID-19. • The correlation between weather and population as the factor in spreading of COVID-19.


Subject(s)
COVID-19 , Climate Change , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Humidity , Rain , Temperature , Weather , Pandemics , SARS-CoV-2 , Climate
3.
Harmful Algae ; 129: 102515, 2023 11.
Article in English | MEDLINE | ID: mdl-37951609

ABSTRACT

A large-scale sampling was undertaken during a research cruise across the South China Sea in August 2016, covering an area of about 100,000 km2 to investigate the molecular diversity and distributions of micro-eukaryotic protists, with a focus on the potentially harmful microalgal (HAB) species along the east coast of Peninsular Malaysia. Environmental DNAs from 30 stations were extracted and DNA metabarcoding targeting the V4 and V9 markers in the 18S rDNA was performed. Many protistan molecular units, including previously unreported HAB taxa, were discovered for the first time in the water. Our findings also revealed interesting spatial distribution patterns, with a marked signal of compositional turnover between latitudinal regimes of water masses, where dinophytes and diatom compositions were among the most strongly enhanced at the fronts, leading to distinct niches. Our results further confirmed the widespread distribution of HAB species, such as the toxigenic Alexandrium tamiyavaichii and Pseudo-nitzschia species, and the fish-killing Margalefidinium polykrikoides and Karlodinium veneficum. The molecular information obtained from this study provides an updated HAB species inventory and a toolset that could facilitate existing HAB monitoring schemes in the region to better inform management decisions.


Subject(s)
Diatoms , Dinoflagellida , Microalgae , Animals , Harmful Algal Bloom , Microalgae/genetics , Dinoflagellida/genetics , Diatoms/genetics , China , Water
4.
PeerJ ; 11: e16203, 2023.
Article in English | MEDLINE | ID: mdl-38025728

ABSTRACT

Background: The natural hydrodynamic process of Kuala Nerus, Terengganu, has changed since the extension of Sultan Mahmud Airport runway in 2008. Consequently, severe coastal erosion has occurred in the area, particularly during the northeast monsoon season (NEM). Numerous types of coastal defense structures (CDS) have been constructed to protect the coastline. Despite the loss of esthetic values, the effect of CDS construction on marine organisms in the area remains unknown. Hence, this study aims to assess the ecological aspects of macrobenthic compositions at the CDS area of Kuala Nerus, Terengganu, based on the differences between the southwest (SWM) and northeast (NEM) monsoon seasons. Methods: Macrobenthos were collected from the sediment in July (SWM) and December 2021 (NEM) using the Ponar grab at 12 substations from five sampling stations. Results: The density of macrobenthos was higher in SWM (48,190.82 ind./m2) than in NEM (24,504.83 ind./m2), with phylum Mollusca recording the highest species composition (60-99.3%). The macrobenthos species had a low to moderate level of diversity (H' = 1.4-3.1) with the species were almost evenly distributed (J' = 0.2-0.8). Windward substations exhibited coarser grain sizes (38.56%-86.84%), whereas landward substations exhibited very fine grain sizes (44.26%-86.70%). The SWM season recorded a higher organic matter content (1.6%-6.33%) than the NEM season (0.4%-3.1%). However, metal concentrations in the surface sediment were within the safe range and permissible limits for both seasons, inferring that the macrobenthos composition was unaffected. Discussion: This study demonstrated that the CDS associated with the monsoon system has controlled the hydrodynamics and nearshore sedimentary processes in the Kuala Nerus coastal zone, thereby affecting the macrobenthos population, in terms of richness and density. The ecological and energetic effects of the coastal structures in different seasons have resulted in a more significant result, with the SWM exhibiting a higher macrobenthos composition than the NEM.


Subject(s)
Aquatic Organisms , Mollusca , Animals , Seasons , Malaysia
5.
Mar Environ Res ; 188: 106012, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37159981

ABSTRACT

Small pelagic fisheries in the Java Sea (JS) contributes to about 26.6% of the total marine fisheries resources, where their spatial-temporal variation is controlled by seasonal oceanographic changes. This study aims to investigate a relationship between seasonal reversal circulation and number of light-fishing vessels (VBD) dispersion that capture small pelagic fishes, using multi-datasets from a regional ocean circulation model, satellite-derived datasets, and pelagic fish landing datasets between 2010 and 2020. The model demonstrates that main axis of eastward (westward) monsoon current that brings warmer and fresher (cooler and saltier) water, confines much closer along the northern Java (southern Kalimantan) during the northwest (southeast) monsoon period. These changes are followed unprecedentedly by southward (northward) shift of VBD and high abundance of euryhaline (stenohaline) fish species. This new evidence implies that reversal monsoon current and surface component of Makassar Throughflow play a significant role on delineating potential small pelagic fishing ground and fish productions.


Subject(s)
Fisheries , Water , Animals , Indonesia , Seasons , Fishes
6.
Environ Sci Pollut Res Int ; 30(24): 65351-65363, 2023 May.
Article in English | MEDLINE | ID: mdl-37081368

ABSTRACT

Dissolved oxygen is an ecologically critical variable with the prevalence of hypoxia one of the key global anthropogenic issues. A study was carried out to understand the causes of low dissolved oxygen in Brunei Bay, northwest Borneo. Hypoxia was widespread in bottom waters in the monsoonal dry season with dissolved oxygen < 2 mg/L throughout the coastal zone. This was a result of riverine nutrient input primarily from the Padas river driving excess primary production and its subsequent sinking into stratified bottom water where its decomposition consumed oxygen. Despite higher riverine nutrient input in the wet season hypoxia was less extensive due to the combination of turbidity reducing coastal primary production, the intrusion of oxygen-rich water from the South China Sea into offshore bottom layer waters and horizontal flushing increase advection of phytoplankton biomass out of the bay. Future investigation of hypoxia in shallow tropical regions therefore needs to consider the role of monsoonal season.


Subject(s)
Bays , Hypoxia , Humans , Brunei , Oxygen/analysis , Seasons , Water , Environmental Monitoring
7.
Environ Sci Pollut Res Int ; 30(34): 81839-81857, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35789462

ABSTRACT

The impact of global warming presents an increased risk to the world's shorelines. The Intergovernmental Panel on Climate Change (IPCC) reported that the twenty-first century experienced a severe global mean sea-level rise due to human-induced climate change. Therefore, coastal planners require reasonably accurate estimates of the rate of sea-level rise and the potential impacts, including extreme sea-level changes, floods, and shoreline erosion. Also, land loss as a result of disturbance of shoreline is of interest as it damages properties and infrastructure. Using a nonlinear autoregressive network with an exogenous input (NARX) model, this study attempted to simulate (1991 to 2012) and predict (2013-2020) sea-level change along Merang kechil to Kuala Marang in Terengganu state shoreline areas. The simulation results show a rising trend with a maximum rate of 28.73 mm/year and an average of about 8.81 mm/year. In comparison, the prediction results show a rising sea level with a maximum rate of 79.26 mm/year and an average of about 25.34 mm/year. The database generated from this study can be used to inform shoreline defense strategies adapting to sea-level rise, flood, and erosion. Scientists can forecast sea-level increases beyond 2020 using simulated sea-level data up to 2020 and apply it for future research. The data also helps decision-makers choose measures for vulnerable shoreline settlements to adapt to sea-level rise. Notably, the data will provide essential information for policy development and implementation to facilitate operational decision-making processes for coastal cities.


Subject(s)
Climate Change , Floods , Humans , Cities , Malaysia
8.
Mar Pollut Bull ; 169: 112515, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34023585

ABSTRACT

Japan recently announced plans to discharge over 1.2 million tons of radioactive water from the Fukushima Daiichi Nuclear Power Plant (FDNPP) into the Pacific Ocean. The contaminated water can poses a threat to marine ecosystems and human health. To estimate the impact of the plan, here, we developed a three-dimensional global model to track the transport and dispersion of tritium released from the radioactive water of the FDNPP. The pollution scenarios for four release durations (1 month, 1 year, 5 years, and 10 years) were simulated. The simulation results showed that for the release in short-duration scenarios (1 month and 1 year), the peak plume with high tritium concentration shifted with the currents and finally reached the northeastern Pacific. For the long-duration scenarios (5 years and 10 years), the peak plume of the contaminated water was confined to coastal regions east of Japan.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Ecosystem , Humans , Japan , Nuclear Power Plants , Pacific Ocean , Tritium , Water , Water Pollutants, Radioactive/analysis
9.
Data Brief ; 35: 106866, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33816725

ABSTRACT

This article contains water quality data collected in a shallow and narrow Setiu Lagoon during the southwest monsoon, wet period of northeast monsoon and dry period of northeast monsoon. The surface water quality parameters, which include the temperature, salinity, chlorophyll-a and nutrients (ammonia, nitrate, phosphate, and silicate) were sampled twice per day (high and low tides) at a total of eight stations. Hourly current speed and direction was obtained from mooring of two units of current meters. Compared to the Malaysia Marine Water Quality Criteria and Standard (MWQCS), nutrients in Setiu Lagoon were in Class 2. Although limited, this dataset can provide insights on the changes of water quality condition in Setiu Lagoon under the presence of anthropogenic pressures.

10.
Data Brief ; 35: 106893, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33718548

ABSTRACT

In this article, the abundance of phytoplankton community structure in Malacca Straits (MS); from Port Klang to Langkawi Island are reported. The datasets include data from 25 selected sampling sites that were acquired in August 2019 on board the RV Discovery's cruise expedition. These data contain details on the density of phytoplankton (cell L-1), total number of species, volume seawater filtered (in L) and the concentration factors (ml) in MS. Data presented in this article consists of 163 species, including unidentified species from 6 phyla of phytoplankton, along with the percentage of a major community group in MS.

11.
Mar Pollut Bull ; 164: 112011, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33485016

ABSTRACT

Setiu Wetland is rapidly developing into an aquaculture and agriculture hub, causing concern about its water quality condition. To address this issue, it is imperative to acquire knowledge of the spatial and temporal distributions of pollutants. Consequently, this study applied combinations of hydrodynamic and particle tracking models to identify the transport behaviour of pollutants and calculate the residence time in Setiu Lagoon. The particle tracking results indicated that the residence time in Setiu Lagoon was highly influenced by the release location, where particles released closer to the river mouth exhibited shorter residence times than those released further upstream. Despite this fact, the pulse of river discharges successfully reduced the residence time in the order of two to twelve times shorter. Under different tidal phases, the residence time during the neap tide was longer regardless of heavy rainfalls, implying the domination of tidal flow in the water renewal within the lagoon.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Aquaculture , Rivers , Water Quality
12.
Data Brief ; 32: 106182, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32923531

ABSTRACT

This article provides raw datasets of the coral reefs status in Pulau Bidong, southern of South China Sea before and after being strike by the tropical storm Pabuk on January 2019. Data were collected using a rapid coral survey method called Coral Video Transect (CVT) technique. The data were collected along a 100 m transect line set up parallel to the shoreline and at a constant depth. In total, eight transects were surveyed during both periods (pre - August 2016, post - March 2019). Back in laboratory, the footage was then extracted into non-overlapping frames or still images prior to image analysis using Coral Point Count with Excel Extension (CPCe) software. The benthic coral reefs relative percentage cover was automatically generated after the image analysis and represented by five major categories; live coral (C), algae (ALG), other invertebrates (OT), dead coral (DC), and sand silt and rock (SR). Live coral cover was identified up to the genus level. This raw dataset was used in this article. The data provided in this article could be of significant use for future studies especially on coral recovery after the natural disturbances. It can provide a baseline assessment especially for coral reefs management as well as to comprehend changes in coral health status in the face of natural and anthropogenic disturbances. The data presented here support the information in the article Safuan et al. (2020).

13.
PLoS One ; 12(2): e0171979, 2017.
Article in English | MEDLINE | ID: mdl-28187215

ABSTRACT

This study analyzes two wind-induced upwelling mechanisms, namely, Ekman transport and Ekman pumping that occur during the southwest monsoon. The results suggest that the coastline of the east coast of Peninsular Malaysia (ECPM) is affected by upwelling with spatiotemporal variations. Characterization of upwelling by using wind-induced upwelling indexes (UIW) indicate the existence of favorable upwelling conditions from May to September. Upwelling intensity increased in May and peaked in August before declining in September, decreasing intensity from the southern tip towards the northern tip along the coastline of the ECPM. The existence of upwelling along the ECPM has resulted in an important difference between the SSTs of the inshore and the oceanic regions. Nonetheless, the use of the SST gradient between the inshore and the oceanic SSTs to characterize upwelling (UISST) was found to be unsuitable because the SST along the ECPM was affected by water advection from the Java Sea and incessant changes in the SST. In order to indicate the major contributor of wind-induced upwelling along the ECPM in terms of the spatiotemporal scale, a comparison between Ekman transport and Ekman pumping was drawn by integrating Ekman pumping with respect to the distance where the positive wind stress curl existed. The estimation of Ekman transport and Ekman pumping indicated that Ekman pumping played a major role in contributing towards upwelling in any particular month during the southwest monsoon along the entire coastline of the ECPM as compared to Ekman transport, which contributed towards more than half of the total upwelling transport. By dividing the ECPM into three coastal sections, we observed that Ekman pumping was relatively predominant in the middle and northern coasts, whereas both Ekman transport and Ekman pumping were equally prevalent in the southern coast.


Subject(s)
Water Movements , Wind , Meteorological Concepts , Oceans and Seas , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...