Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Ultrason Ferroelectr Freq Control ; 67(10): 2142-2147, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32746170

ABSTRACT

Ferroelectric materials based on lead zirconate titanate (PZT) are widely used as sensors and actuators because of their strong piezoelectric activity. However, their application is limited because of the high processing temperature, brittleness, lack of conformal deposition, and a limited possibility to be integrated with the microelectromechanical systems (MEMS). Recent studies on the piezoelectricity in the 2-D materials have demonstrated their potential in these applications, essentially due to their flexibility and integrability with the MEMS. In this work, we deposited a few layer graphene (FLG) on the amorphous oxidized Si3N4 membranes and studied their piezoelectric response by sensitive laser interferometry and rigorous finite-element modeling (FEM) analysis. Modal analysis by FEM and comparison with the experimental results show that the driving force for the piezoelectric-like response can be a polar interface layer formed between the residual oxygen in Si3N4 and the FLG. The response was about 14 nm/V at resonance and could be further enhanced by adjusting the geometry of the device. These phenomena are fully consistent with the earlier piezoresponse force microscopy (PFM) observations of the piezoelectricity of the graphene on SiO2 and open up an avenue for using graphene-coated structures in the MEMS.

2.
Philos Trans A Math Phys Eng Sci ; 376(2113)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29311203

ABSTRACT

The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

3.
Nano Lett ; 15(5): 3364-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25909996

ABSTRACT

The chemical vapor deposition (CVD) of molybdenum disulfide (MoS2) single-layer films onto periodically poled lithium niobate is possible while maintaining the substrate polarization pattern. The MoS2 growth exhibits a preference for the ferroelectric domains polarized "up" with respect to the surface so that the MoS2 film may be templated by the substrate ferroelectric polarization pattern without the need for further lithography. MoS2 monolayers preserve the surface polarization of the "up" domains, while slightly quenching the surface polarization on the "down" domains as revealed by piezoresponse force microscopy. Electrical transport measurements suggest changes in the dominant carrier for CVD MoS2 under application of an external voltage, depending on the domain orientation of the ferroelectric substrate. Such sensitivity to ferroelectric substrate polarization opens the possibility for ferroelectric nonvolatile gating of transition metal dichalcogenides in scalable devices fabricated free of exfoliation and transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...