Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37514754

ABSTRACT

Drowsy driving can significantly affect driving performance and overall road safety. Statistically, the main causes are decreased alertness and attention of the drivers. The combination of deep learning and computer-vision algorithm applications has been proven to be one of the most effective approaches for the detection of drowsiness. Robust and accurate drowsiness detection systems can be developed by leveraging deep learning to learn complex coordinate patterns using visual data. Deep learning algorithms have emerged as powerful techniques for drowsiness detection because of their ability to learn automatically from given inputs and feature extractions from raw data. Eye-blinking-based drowsiness detection was applied in this study, which utilized the analysis of eye-blink patterns. In this study, we used custom data for model training and experimental results were obtained for different candidates. The blinking of the eye and mouth region coordinates were obtained by applying landmarks. The rate of eye-blinking and changes in the shape of the mouth were analyzed using computer-vision techniques by measuring eye landmarks with real-time fluctuation representations. An experimental analysis was performed in real time and the results proved the existence of a correlation between yawning and closed eyes, classified as drowsy. The overall performance of the drowsiness detection model was 95.8% accuracy for drowsy-eye detection, 97% for open-eye detection, 0.84% for yawning detection, 0.98% for right-sided falling, and 100% for left-sided falling. Furthermore, the proposed method allowed a real-time eye rate analysis, where the threshold served as a separator of the eye into two classes, the "Open" and "Closed" states.


Subject(s)
Automobile Driving , Deep Learning , Blinking , Sleep Stages , Wakefulness , Computers
2.
Sensors (Basel) ; 23(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36772117

ABSTRACT

Current artificial intelligence systems for determining a person's emotions rely heavily on lip and mouth movement and other facial features such as eyebrows, eyes, and the forehead. Furthermore, low-light images are typically classified incorrectly because of the dark region around the eyes and eyebrows. In this work, we propose a facial emotion recognition method for masked facial images using low-light image enhancement and feature analysis of the upper features of the face with a convolutional neural network. The proposed approach employs the AffectNet image dataset, which includes eight types of facial expressions and 420,299 images. Initially, the facial input image's lower parts are covered behind a synthetic mask. Boundary and regional representation methods are used to indicate the head and upper features of the face. Secondly, we effectively adopt a facial landmark detection method-based feature extraction strategy using the partially covered masked face's features. Finally, the features, the coordinates of the landmarks that have been identified, and the histograms of the oriented gradients are then incorporated into the classification procedure using a convolutional neural network. An experimental evaluation shows that the proposed method surpasses others by achieving an accuracy of 69.3% on the AffectNet dataset.


Subject(s)
Deep Learning , Facial Recognition , Humans , Artificial Intelligence , Emotions , Neural Networks, Computer , Facial Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...