Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1316: 342880, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969417

ABSTRACT

Bioelectronics, a field pivotal in monitoring and stimulating biological processes, demands innovative nanomaterials as detection platforms. Two-dimensional (2D) materials, with their thin structures and exceptional physicochemical properties, have emerged as critical substances in this research. However, these materials face challenges in biomedical applications due to issues related to their biological compatibility, adaptability, functionality, and nano-bio surface characteristics. This review examines surface modifications using covalent and non-covalent-based polymer-functionalization strategies to overcome these limitations by enhancing the biological compatibility, adaptability, and functionality of 2D nanomaterials. These surface modifications aim to create stable and long-lasting therapeutic effects, significantly paving the way for the practical application of polymer-functionalized 2D materials in biosensors and bioelectronics. The review paper critically summarizes the surface functionalization of 2D nanomaterials with biocompatible polymers, including g-C3N4, graphene family, MXene, BP, MOF, and TMDCs, highlighting their current state, physicochemical structures, synthesis methods, material characteristics, and applications in biosensors and bioelectronics. The paper concludes with a discussion of prospects, challenges, and numerous opportunities in the evolving field of bioelectronics.


Subject(s)
Biocompatible Materials , Biosensing Techniques , Polymers , Biosensing Techniques/methods , Polymers/chemistry , Biocompatible Materials/chemistry , Humans , Nanostructures/chemistry , Surface Properties , Graphite/chemistry
2.
RSC Adv ; 14(28): 20240-20253, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38919281

ABSTRACT

Engineering the interfacial interaction between the active metal element and support material is a promising strategy for improving the performance of catalysts toward CO2 methanation. Herein, the Ni-doped rare-earth metal-based A-site substituted perovskite-type oxide catalysts (Ni/AMnO3; A = Sm, La, Nd, Ce, Pr) were synthesized by auto-combustion method, thoroughly characterized, and evaluated for CO2 methanation reaction. The XRD analysis confirmed the perovskite structure and the formation of nano-size particles with crystallite sizes ranging from 18 to 47 nm. The Ni/CeMnO3 catalyst exhibited a higher CO2 conversion rate of 6.6 × 10-5 molCO2 gcat -1 s-1 and high selectivity towards CH4 formation due to the surface composition of the active sites and capability to activate CO2 molecules under redox property adopted associative and dissociative mechanisms. The higher activity of the catalyst could be attributed to the strong metal-support interface, available active sites, surface basicity, and higher surface area. XRD analysis of spent catalysts showed enlarged crystallite size, indicating particle aggregation during the reaction; nevertheless, the cerium-containing catalyst displayed the least increase, demonstrating resilience, structural stability, and potential for CO2 methanation reaction.

3.
Heliyon ; 10(1): e24006, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234893

ABSTRACT

Population growth in recent years has led to increased wastewater production and pollution of water resources. This situation also heavily affects Bolivia, so wastewater treatment methods and materials suitable for Bolivian society should be explored. This study investigated the natural Bolivian Zeolite (BZ) and its NaCl-modified structure (NaBZ) as adsorbents for cadmium removal from water. The natural BZ and the modified form NaBZ were investigated by different physicochemical characterization techniques. Furthermore, XPS and FT-IR techniques were used to investigate the adsorption mechanisms. The cadmium adsorption on BZ and NaBZ was analyzed using various mathematical models, and the Langmuir model provided a better description of the experimental adsorption data with cadmium adsorption capacities of 20.2 and 25.6 mg/g for BZ and NaBZ, respectively. The adsorption followed the pseudo-second order kinetics. The effect of different parameters, such as initial cadmium concentration and pH on the adsorption was studied. In addition, the results of the regeneration test indicated that both BZ and NaBZ can be regenerated by using hydrochloric acid (HCl). Finally, the adsorption experiment of BZ and NaBZ on a real water sample (brine from Salar de Uyuni salt flat) containing a mixture of different heavy metals was carried out. The results obtained in this study demonstrate the effectiveness of natural BZ and modified NaBZ in the removal of heavy metals from wastewater.

4.
Heliyon ; 9(9): e19376, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810019

ABSTRACT

The selective catalytic reduction (SCR) system in automobiles using urea solution as a source of NH3 suffers from solid deposit problems in pipelines and poor efficiency during engine startup. Although direct use of high pressure NH3 is restricted due to safety concerns, which can be overcome by using solid sorbents as NH3 carrier. Strontium chloride (SrCl2) is considered the best sorbent due to its high sorption capacity; however, challenges are associated with the processing of stable engineering structures due to extraordinary volume expansion during the NH3 sorption. This study reports the fabrication of a novel structure consisting of a zeolite cage enclosing the SrCl2 pellet (SPZC) through extrusion-based 3D printing (Direct Ink Writing). The printed SPZC structure demonstrated steady sorption of NH3 for 10 consecutive cycles without significant uptake capacity and structural integrity loss. Furthermore, the structure exhibited improved sorption and desorption kinetics than pure SrCl2. The synergistic effect of zeolite as physisorbent and SrCl2 as chemisorbent in the novel composite structure enabled the low-pressure (<0.4 bar) and high-pressure (>0.4 bar) NH3 sorption, compared to pure SrCl2, which absorbed NH3 at pressures above 0.4 bar. Regeneration of SPZC composite sorbent under evacuation showed that 87.5% percent of NH3 was desorbed at 20 °C. Thus, the results demonstrate that the rationally designed novel SPZC structure offers safe and efficient storage of NH3 in the SCR system and other applications.

5.
Materials (Basel) ; 16(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570024

ABSTRACT

High-entropy alloys (HEA) with superior biocompatibility, high pitting resistance, minimal debris accumulation, and reduced release of metallic ions into surrounding tissues are potential replacements for traditional metallic bio-implants. A novel equiatomic HEA based on biocompatible metals, CrMoNbTiZr, was consolidated by spark plasma sintering (SPS). The relative sintered density of the alloy was about 97% of the theoretical density, indicating the suitability of the SPS technique to produce relatively dense material. The microstructure of the sintered HEA consisted of a BCC matrix and Laves phase, corresponding to the prediction of the thermodynamic CALPHAD simulation. The HEA exhibited a global Vickers microhardness of 531.5 ± 99.7 HV, while the individual BCC and Laves phases had hardness values of 364.6 ± 99.4 and 641.8 ± 63.0 HV, respectively. Its ultimate compressive and compressive yield strengths were 1235.7 ± 42.8 MPa and 1110.8 ± 78.6 MPa, respectively. The elasticity modulus of 34.9 ± 2.9 GPa of the HEA alloy was well within the range of cortical bone and significantly lower than the values reported for commonly used biomaterials made from Ti-based and Cr-Co-based alloys. In addition, the alloy exhibited good resistance to bio-corrosion in PBS and Hanks solutions. The CrMoNbTiZr HEA exhibited an average COF of 0.43 ± 0.06, characterized mainly by abrasive and adhesive wear mechanisms. The CrMoNbTiZr alloy's mechanical, bio-corrosion, and wear resistance properties developed in this study showed a good propensity for application as a biomaterial.

6.
RSC Adv ; 13(24): 16039-16046, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260714

ABSTRACT

The synthesis of metal-organic frameworks (MOFs) and their processing into structures with tailored hierarchical porosity is essential for using MOFs in the adsorption-driven gas separation process. We report the synthesis of modified Cu-MOF nanocrystals for CO2 separation from CH4 and N2, prepared from DABCO (1,4-diazabicyclo[2.2.2] octane) and 9,10 anthracene dicarboxylic acid linkers with copper metal salt. The synthesis parameters were optimized to introduce mesoporosity in the microporous Cu-MOF crystals. The volumetric CO2 adsorption capacity of the new hierarchical Cu-MOF was 2.58 mmol g-1 at 293 K and 100 kPa with a low isosteric heat of adsorption of 28 kJ mol-1. The hierarchical Cu-MOF nanocrystals were structured into mechanically stable pellets with a diametral compression strength exceeding 1.2 MPa using polyvinyl alcohol (PVA) as a binder. The CO2 breakthrough curves were measured from a binary CO2-CH4 (45/55 vol%) gas mixture at 293 K and 400 kPa pressure on Cu-MOF pellets to demonstrate the role of hierarchical porosity in mass transfer kinetics during adsorption. The structured hierarchical Cu-MOF pellets showed stable cyclic CO2 adsorption capacity during 5 adsorption-desorption cycles with a CO2 uptake capacity of 3.1 mmol g-1 at 400 kPa and showed a high mass transfer coefficient of 1.8 m s-1 as compared to the benchmark zeolite NaX commercialized binderless granules, suggesting that the introduction of hierarchical porosity in Cu-MOF pellets can effectively reduce the time for CO2 separation cycles.

7.
ACS Omega ; 8(16): 14484-14489, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37125128

ABSTRACT

Among the existing materials for heat conversion, high-entropy alloys are of great interest due to the tunability of their functional properties. Here, we aim to produce single-phase high-entropy oxides composed of Co-Cr-Fe-Mn-Ni-O through spark plasma sintering (SPS), testing their thermoelectric (TE) properties. This material was successfully obtained before via a different technique, which requires a very long processing time. Hence, the main target of this work is to apply spark plasma sintering, a much faster and scalable process. The samples were sintered in the temperature range of 1200-1300 °C. Two main phases were formed: rock salt-structured Fm3̅m and spinel-structured Fd3̅m. Comparable transport properties were achieved via the new approach: the highest value of the Seebeck coefficient reached -112.6 µV/K at room temperature, compared to -150 µV/K reported before; electrical properties at high temperatures are close to the properties of the single-phase material (σ = 0.2148 S/cm, σ ≈ 0.2009 S/cm reported before). These results indicate that SPS can be successfully applied to produce highly efficient TE high-entropy alloys in a fast and scalable way. Further optimization is needed for the production of single-phase materials, which are expected to exhibit an even better TE functionality.

8.
Chemosphere ; 328: 138508, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36972873

ABSTRACT

Water pollution has jeopardized human health, and a safe supply of drinking water has been recognized as a worldwide issue. The increase in the accumulation of heavy metals in water from different sources has led to the search for efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites are promising materials for removing heavy metals from different sources contaminating the water. It is important to know the structure, chemistry, and performance of the removal of heavy metals from water, of the natural zeolites to design water treatment processes. This review focuses on critical analyses of the application of distinct natural zeolites for the adsorption of heavy metals from water, specifically, arsenic (As(III), As(V)), cadmium (Cd(II)), chromium (Cr(III), Cr(VI)), lead (Pb(II)), mercury(Hg(II)) and nickel (Ni(II)). The reported results of heavy-metal removal by natural zeolites are summarized, and the chemical modification of natural zeolites by acid/base/salt reagent, surfactants, and metallic reagents has been analyzed, compared, and described. Furthermore, the adsorption/desorption capacity, systems, operating parameters, isotherms, and kinetics for natural zeolites were described and compared. According to the analysis, clinoptilolite is the most applied natural zeolite to remove heavy metals. It is effective in removing As, Cd, Cr, Pb, Hg, and Ni. Additionally, an interesting fact is a variation between the natural zeolites from different geological origins regarding the sorption properties and capacities for heavy metals suggesting that natural zeolites from different regions of the world are unique.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Zeolites , Humans , Cadmium/analysis , Zeolites/chemistry , Adsorption , Lead , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Mercury/analysis , Kinetics
9.
Article in English | MEDLINE | ID: mdl-36731867

ABSTRACT

Mesoporous silica particles (MSPs) can be used as food additives, clinically for therapeutic applications, or as oral delivery vehicles. It has also been discussed to be used for a number of novel applications including treatment for diabetes and obesity. However, a major question for their possible usage has been if these particles persist structurally and retain their effect when passing through the gastrointestinal tract (GIT). A substantial breaking down of the particles could reduce function and be clinically problematic for safety issues. Hence, we investigated the biostability of MSPs of the SBA-15 kind prepared at large scales (100 and 1000 L). The MSPs were orally administered in a murine model and clinically in humans. A joint extraction and calcination method was developed to recover the MSPs from fecal mass, and the MSPs were characterized physically, structurally, morphologically, and functionally before and after GIT passage. Analyses with N2 adsorption, X-ray diffraction, electron microscopy, and as a proxy for general function, adsorption of the enzyme α-amylase, were conducted. The adsorption capacity of α-amylase on extracted MSPs was not reduced as compared to the pristine and control MSPs, and adsorption of up to 17% (w/w) was measured. It was demonstrated that the particles did not break down to any substantial degree and retained their function after passing through the GITs of the murine model and in humans. The fact the particles were not absorbed into the body was ascribed to that they were micron-sized and ingested as agglomerates and too big to pass the intestinal barrier. The results strongly suggest that orally ingested MSPs can be used for a number of clinical applications.

10.
J Mech Behav Biomed Mater ; 140: 105724, 2023 04.
Article in English | MEDLINE | ID: mdl-36841123

ABSTRACT

Biodegradable metals are being investigated as temporary implants that dissolve safely in the body after bone regeneration. Zinc (Zn) has an intermediate biodegradation rate between magnesium and stainless steels, yet its degradation rate is too slow to function as a temporary orthopedic implant. Alloying with nutrient elements is considered a strategy to tune its mechanical properties and in vivo biodegradability. Zn/calcium (Zn/Ca) alloys (with 0.5, 1, and 2 wt% Ca) were processed by spark plasma sintering and their microstructure, mechanical, and biodegradation properties were investigated. Ca was distributed in the grain boundary regions of Zn due to its low miscibility in Zn. Furthermore, the corrosion rates of Zn/Ca alloys determined from linear polarization measurements (0.164-0.325 mm/yr) accelerated by at least 10% compared with pure sintered Zn (0.149 mm/yr) with simultaneous dissolution of Zn and Ca, as verified from X-ray diffraction analysis of the corrosion products. The alloy specimens exhibited hardness (52-58 HV) and compressive strength (93-119 MPa) comparable with those of human cortical and cancellous bones (49 HV; 90-209 MPa). This study demonstrated the tunability of the mechanical and biodegradation properties of Zn-based materials by alloying them with a nutrient element for potential application as temporary orthopedic implants.


Subject(s)
Biocompatible Materials , Zinc , Humans , Biocompatible Materials/chemistry , Zinc/chemistry , Calcium/chemistry , Materials Testing , Alloys/chemistry , Micronutrients , Absorbable Implants , Corrosion
11.
RSC Adv ; 12(54): 34910-34917, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540240

ABSTRACT

Calcium chloride (CaCl2) impregnated zeolite A and strontium chloride (SrCl2) impregnated zeolite A and X composite granules were evaluated as ammonia sorbents for automotive selective catalytic reduction systems. The SrCl2-impregnated zeolite A granules showed a 14% increase in ammonia uptake capacity (8.39 mmol g-1) compared to zeolite A granules (7.38 mmol g-1). Furthermore, composite granules showed 243% faster kinetics of ammonia sorption (0.24 mmol g-1 min-1) compared to SrCl2 (0.07 mmol g-1 min-1) in the first 20 min. The composite CaCl2/SrCl2 impregnated zeolite A granules combined the advantages of the zeolites and CaCl2/SrCl2, where the rapid physisorption from zeolites can reduce the ammonia loading and release time, and chemisorption from the CaCl2/SrCl2 offers abundant ammonia capacity. Moreover, by optimizing the content of SrCl2 loading, the composite granules maintained the granular form with a crushing load of 17 N per granule after ammonia sorption-desorption cycles. Such structurally stable composite sorbents offer an opportunity for fast ammonia loading/release in automotive selective catalytic reduction systems.

12.
Chemosphere ; 306: 135566, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35787877

ABSTRACT

Polluted water resources, particularly those polluted with industrial effluents' dyes, are carcinogenic and hence pose a severe threat to sustainable and longstanding worldwide development. Meanwhile, adsorption is a promising process for polluted/wastewater treatment. In particular, activated carbon (AC) is popular among various wastewater treatment adsorbents, especially in the organic contaminants' remediation in wastewater. Hence, the AC's synthesis from degradable and non-degradable resources, the carbon activation involved in the AC synthesis, and the AC's modification to cutting-edge and effective materials have been modern-research targets in recent years. Likewise, the main research focuses worldwide have been the salient AC characteristics, such as its surface chemistry, porosity, and enhanced surface area. Notably, various modified-AC synthesis methods have been employed to enhance the AC's potential for improved contaminants-removal. Hence, we critically analyze the different modified ACs (with enhanced (surface) functional groups and textural properties) of their capacity to remove different-natured anionic dyes in wastewater. We also discuss the corresponding AC modification techniques, the factors affecting the AC properties, and the modifying agents' influence on the AC's morphological/adsorptive properties. Finally, the AC research of future interest has been proposed by identifying the current AC research gaps, especially related to the AC's application in wastewater treatment.


Subject(s)
Wastewater , Water Pollutants, Chemical , Adsorption , Charcoal/chemistry , Coloring Agents , Wastewater/chemistry , Water Pollutants, Chemical/analysis
13.
Adv Mater ; 34(38): e2204800, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35906189

ABSTRACT

Metal-organic frameworks (MOFs) are hybrid porous crystalline networks with tunable chemical and structural properties. However, their excellent potential is limited in practical applications by their hard-to-shape powder form, making it challenging to assemble MOFs into macroscopic composites with mechanical integrity. While a binder matrix enables hybrid materials, such materials have a limited MOF content and thus limited functionality. To overcome this challenge, nanoMOFs are combined with tailored same-charge high-aspect-ratio cellulose nanofibrils (CNFs) to manufacture robust, wet-stable, and multifunctional MOF-based aerogels with 90 wt% nanoMOF loading. The porous aerogel architectures show excellent potential for practical applications such as efficient water purification, CO2 and CH4 gas adsorption and separation, and fire-safe insulation. Moreover, a one-step carbonization process enables these aerogels as effective structural energy-storage electrodes. This work exhibits the unique ability of high-aspect-ratio CNFs to bind large amounts of nanoMOFs in structured materials with outstanding mechanical integrity-a quality that is preserved even after carbonization. The demonstrated process is simple and fully discloses the intrinsic potential of the nanoMOFs, resulting in synergetic properties not found in the components alone, thus paving the way for MOFs in macroscopic multifunctional composites.

14.
Entropy (Basel) ; 24(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35327840

ABSTRACT

High-entropy/multicomponent alloy (HEA/MCA) has received significant research attention in the last decade. There is a dearth of data-driven works dedicated to assessing and visualizing the HEA/MCA literature from a global perspective. To this end, we present the first bibliometric literature analysis of more than 3500 HEA/MCA articles, published between 2004 and 2021, in the Scopus database. We identify the most prolific authors, their collaborators, institutions, and most prominent research outlet. Co-occurrence networks of keywords are mapped and analyzed. A steep rise in research outputs is observed from 2013, when the number of annual publications doubled the previous years. The top five preferred research outlets include Journal of Alloys and Compounds, Materials Science and Engineering A, Scripta Materialia, Intermetallics, and Acta Materialia. Most of these publications emanate from researchers and institutions within China, USA, and Germany, although international scientific collaboration among them is lacking. Research gaps and future research directions are proposed, based on co-occurrence frequencies of author keywords. Finally, a brief systematic review of emerging applications, covering hydrogen storage, additive manufacturing, catalysis, and superconductivity, is undertaken. This work provides an important comprehensive reference guide for researchers to deepen their knowledge of the field and pursue new research directions.

15.
Entropy (Basel) ; 25(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36673214

ABSTRACT

By their unique compositions and microstructures, recently developed high-entropy materials (HEMs) exhibit outstanding properties and performance above the threshold of traditional materials. Wear- and erosion-resistant materials are of significant interest for different applications, such as industrial devices, aerospace materials, and military equipment, related to their capability to tolerate heavy loads during sliding, rolling, or impact events. The high-entropy effect and crystal lattice distortion are attributed to higher hardness and yield stress, promoting increased wear and erosion resistance in HEMs. In addition, HEMs have higher defect formation/migration energies that inhibit the formation of defect clusters, making them resistant to structural damage after radiation. Hence, they are sought after in the nuclear and aerospace industries. The concept of high-entropy, applied to protective materials, has enhanced the properties and performance of HEMs. Therefore, they are viable candidates for today's demanding protective materials for wear, erosion, and irradiation applications.

16.
Science ; 374(6574): 1464-1469, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34914501

ABSTRACT

Metal-organic frameworks (MOFs) as solid sorbents for carbon dioxide (CO2) capture face the challenge of merging efficient capture with economical regeneration in a durable, scalable material. Zinc-based Calgary Framework 20 (CALF-20) physisorbs CO2 with high capacity but is also selective over water. Competitive separations on structured CALF-20 show not just preferential CO2 physisorption below 40% relative humidity but also suppression of water sorption by CO2, which was corroborated by computational modeling. CALF-20 has a low enthalpic regeneration penalty and shows durability to steam (>450,000 cycles) and wet acid gases. It can be prepared in one step, formed as composite materials, and its synthesis can be scaled to multikilogram batches.

17.
RSC Adv ; 12(2): 664-670, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35425096

ABSTRACT

Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and coated with zeolitic imidazolate framework-8 (ZIF-8) by a phase conversion growth method and investigated for CO2 capture. The PAN nanofibers were pre-treated with NaOH, and further coated with zinc hydroxide, which was subsequently converted into ZIF-8 by the addition of 2-methyl imidazolate. In the resulting flexible ZIF-8/PAN composite nanofibers, ZIF-8 loadings of up to 57 wt% were achieved. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (EDS) showed the formation of evenly distributed submicron-sized ZIF-8 crystals on the surface of the PAN nanofibers with sizes between 20 and 75 nm. X-ray photoelectron spectroscopy (XPS) and carbon-13 nuclear magnetic resonance (13C NMR) investigations indicated electrostatic interactions and hydrogen bonds between the ZIF-8 structure and the PAN nanofiber. The ZIF-8/composite nanofibers showed a high BET surface area of 887 m2 g-1. CO2 adsorption isotherms of the ZIF-8/PAN composites revealed gravimetric CO2 uptake capacities of 130 mg g-1 (at 298 K and 40 bar) of the ZIF-8/PAN nanofiber and stable cyclic adsorption performance.

18.
ACS Appl Mater Interfaces ; 12(18): 21070-21079, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32290645

ABSTRACT

Development of high-entropy alloy (HEA) films is a promising and cost-effective way to incorporate these materials of superior properties in harsh environments. In this work, a refractory high-entropy alloy (RHEA) film of equimolar CuMoTaWV was deposited on silicon and 304 stainless-steel substrates using DC-magnetron sputtering. A sputtering target was developed by partial sintering of an equimolar powder mixture of Cu, Mo, Ta, W, and V using spark plasma sintering. The target was used to sputter a nanocrystalline RHEA film with a thickness of ∼900 nm and an average grain size of 18 nm. X-ray diffraction of the film revealed a body-centered cubic solid solution with preferred orientation in the (110) directional plane. The nanocrystalline nature of the RHEA film resulted in a hardness of 19 ± 2.3 GPa and an elastic modulus of 259 ± 19.2 GPa. A high compressive strength of 10 ± 0.8 GPa was obtained in nanopillar compression due to solid solution hardening and grain boundary strengthening. The adhesion between the RHEA film and 304 stainless-steel substrates was increased on annealing. For the wear test against the E52100 alloy steel (Grade 25, 700-880 HV) at 1 N load, the RHEA film showed an average coefficient of friction (COF) and wear rate of 0.25 (RT) and 1.5 (300 °C), and 6.4 × 10-6 mm3/N m (RT) and 2.5 × 10-5 mm3/N m (300 °C), respectively. The COF was found to be 2 times lower at RT and wear rate 102 times lower at RT and 300 °C than those of 304 stainless steel. This study may lead to the processing of high-entropy alloy films for large-scale industrial applications.

19.
Molecules ; 25(6)2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32197376

ABSTRACT

Biogas is a potential renewable energy resource that can reduce the current energy dependency on fossil fuels. The major limitation of utilizing biogas fully in the various applications is the presence of a significant volume fraction of carbon dioxide in biogas. Here, we used adsorption-driven CO2 separation using the most prominent adsorbents, NaX (faujasite) and CaA (Linde Type A) zeolites. The NaX and CaA zeolites were structured into hierarchically porous granules using a low-cost freeze granulation technique to achieve better mass transfer kinetics. The freeze granulation processing parameters and the rheological properties of suspensions were optimized to obtain homogenous granules of NaX and CaA zeolites 2-3 mm in diameter with macroporosity of 77.9% and 68.6%, respectively. The NaX and CaA granules kept their individual morphologies, crystallinities with a CO2 uptake of 5.8 mmol/g and 4 mmol/g, respectively. The CO2 separation performance and the kinetic behavior were estimated by breakthrough experiments, where the NaX zeolite showed a 16% higher CO2 uptake rate than CaA granules with a high mass transfer coefficient, 1.3 m/s, compared to commercial granules, suggesting that freeze-granulated zeolites could be used to improve adsorption kinetics and reduce cycle time for biogas upgrading in the adsorption swing technology.


Subject(s)
Biofuels , Zeolites/chemistry , Carbon Dioxide/chemistry , Porosity
20.
Dalton Trans ; 48(19): 6647, 2019 05 15.
Article in English | MEDLINE | ID: mdl-31025678

ABSTRACT

Correction for 'A high-entropy B4(HfMo2TaTi)C and SiC ceramic composite' by Hanzhu Zhang et al., Dalton Trans., 2019, DOI: 10.1039/c8dt04555k.

SELECTION OF CITATIONS
SEARCH DETAIL
...