Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38140941

ABSTRACT

Actively treadmilling FtsZ acts as the pivotal scaffold for bacterial cell divisome components providing them with a circumferential ride along the site of future division. FtsZ from slow growing Helicobacter pylori (HpFtsZ), a class I carcinogen which thrives abundantly in the acidic environment is poorly understood. We studied HpFtsZ as a function of pH, cations and time and compared it with well-studied E. coli FtsZ (EcFtsZ). HpFtsZ shows pH dependent GTPase activity which is inhibited under acidic conditions. Mg+2 ions play an indispensable role in its GTPase activity, however, higher Mg+2 levels negatively affect its activity. As compared to EcFtsZ, HpFtsZ exhibits lower and slower nucleotide hydrolyzing activity. Molecular Dynamics Simulation studies of FtsZ reveal that GTP binding induces a rewiring of the hydrogen bond network which results in reduction of the binding cleft volume leading to the spontaneous release of GTP. The GTPase activity is linked to the extent of reduction in the binding cleft volume, which is also supported by the binding free energy analysis. Evidently, HpFtsZ is a pH sensitive GTPase with low efficiency that may reflect on the overall slow growth rate of H. pylori.

2.
ACS Appl Mater Interfaces ; 15(30): 36966-36974, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37479219

ABSTRACT

For the fabrication of modern graphene devices, uniform growth of high-quality monolayer graphene on wafer scale is important. This work reports on the growth of large-scale graphene on semiconducting 8 inch Ge(110)/Si wafers by chemical vapor deposition and a DFT analysis of the growth process. Good graphene quality is indicated by the small FWHM (32 cm-1) of the Raman 2D band, low intensity ratio of the Raman D and G bands (0.06), and homogeneous SEM images and is confirmed by Hall measurements: high mobility (2700 cm2/Vs) and low sheet resistance (800 Ω/sq). In contrast to Ge(001), Ge(110) does not undergo faceting during the growth. We argue that Ge(001) roughens as a result of vacancy accumulation at pinned steps, easy motion of bonded graphene edges across (107) facets, and low energy cost to expand Ge area by surface vicinals, but on Ge(110), these mechanisms do not work due to different surface geometries and complex reconstruction.

3.
ACS Appl Mater Interfaces ; 12(2): 3188-3197, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31895529

ABSTRACT

The oxidation behavior of Ge(001) and Ge(110) surfaces underneath the chemical vapor deposition (CVD)-grown graphene films has been investigated experimentally and interpreted on the basis of ab initio calculations. Freshly grown samples were exposed to air for more than 7 months and periodically monitored by X-ray photoelectron spectroscopy, scanning electron microscopy, and Raman spectroscopy. The oxidation of Ge(110) started with incubation time of several days, during which the oxidation rate was supposedly exponential. After an ultrathin oxide grew, the oxidation continued with a slow but constant rate. No incubation was detected for Ge(001). The oxide thickness was initially proportional to the square root of time. After 2 weeks, the rate saturated at a value fivefold higher than that for Ge(110). We argue that after the initial phase, the oxidation is limited by the diffusion of oxidizing species through atomic-size openings at graphene domain boundaries and is influenced by the areal density and by the structural quality of the boundaries, whereby the latter determines the initial behavior. Prolonged exposure affected the surface topography and reduced the strain in graphene. In the last step, both the air-exposed samples were annealed in vacuum at 850 °C. This removed oxygen from the substrate and restored the samples to their initial state. These findings might constitute an important step toward further optimization of graphene grown on Ge.

SELECTION OF CITATIONS
SEARCH DETAIL
...