Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 85(5): 1671-1684, 2022 May.
Article in English | MEDLINE | ID: mdl-34913535

ABSTRACT

Biodiesel is a promising, bio-based, renewable, nontoxic, environment friendly, and alternative fuel for petroleum derived fuels which helps to reduce dependency on conventional fossil fuels. In this study, six novel, nonedible seed oil producing feedstock were explored for their potential for sustainable production of biodiesel. It is very important to correctly identify oil yielding plant species. Scanning electron microscopy (SEM) was used as reliable tool for authentic identification of oil yielding seeds. Macromorphological characters of seeds were studied with light microscopy (LM). Outcomes of LM of seeds exposed distinctive variation in seed size from 16.3 to 3.2 mm in length and 12.4 to 0.9 mm in width, shape varied from oval to triangular, and color from black to light brown. Oil content of nonedible seed ranged from 25 to 30% (w/w). Free fatty acid content of seed oil varied from 0.32 to 2.5 mg KOH/g. Moreover, ultra structural study of seeds via SEM showed variation in surface sculpturing, cell arrangement, cell shape, periclinal wall shape, margins, protuberances, and anticlinal wall shape. Surface sculpturing varied from rugged, reticulate, varrucose, papillate, and striate. Periclinal wall arrangements confirmed variation from rough, wavy, raised, depressed, smooth, and elevated whereas, anticlinal walls pattern showed variation from profuse undulating, smooth, raised, grooved, deep, curved, and depressed. It was concluded that SEM could be a latent and advanced technique in unveiling hidden micromorphological characters of nonedible oil yielding seeds which delivers valuable information to researchers and indigenous people for precise and authentic identification and recognition.


Subject(s)
Biofuels , Seeds , Humans , Microscopy, Electron, Scanning , Plant Oils , Seeds/anatomy & histology
2.
Microsc Res Tech ; 84(3): 379-393, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32954621

ABSTRACT

Second-generation biofuels prove to be a distinctive and renewable source of sustainable energy and cleaner environment. The current study focuses on the exploration and identification of four nonedible sources, that is, Brassica oleracea L., Carthamus oxyacantha M.Bieb., Carthamus tinctorius L., and Beaumontia grandiflora Wall., utilizing light microscopy (LM) and scanning electron microscopy (SEM) for studying the detailed micromorphological features of these seeds. LM revealed that size ranges from 3 to 20 mm. furthermore, a great variety of color is observed from pitch black to greenish gray and yellowish white to off white. Seeds ultrastructure study with the help of SEM revealed a great variety in shape, size, color, sculpturing and periclinal wall shape, and so on. Followed by the production of fatty acid methyl esters from a novel source, that is, seeds oil of Brassica oleracea L. (seed oil content 42.20%, FFA content 0.329 mg KOH/g) using triple metal impregnated montmorillonite clay catalyst (Cu-Mg-Zn-Mmt). Catalyst was characterized using SEM-EDX, FT-IR. Maximum yield of Brassica oleracea L. biodiesel (87%) was obtained at the conditions; 1:9 of oil to methanol ratio, 0.5 g of catalyst, 5 hr reaction time, and 90°C of temperature. Synthesized biodiesel was characterized by FT-IR, GC-MS, and NMR. Fuel properties of the Brassica oleracea L. FAMES were determined and found in accordance with ASTM standards.


Subject(s)
Plant Oils , Seeds , Esterification , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...