Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(29): 26437-26443, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521606

ABSTRACT

Novel N-aryl-functionalized PNP ligands (1-4) bearing m-alkyloxy/-silyloxy substituents were prepared and evaluated for chromium-catalyzed ethylene oligomerization using MMAO-3A as an activator. The selected Cr/PNP system under optimized condition exhibited high 1-octene-selective (up to 70 wt %) ethylene tetramerization at a remarkable rate (over 3000 kg gCr-1 h-1). More importantly, the undesirable polyethylene selectivity was restricted to a minimum level of ∼1-2 wt % for pre-catalysts derived with ligands 1 and 2. Employing chlorobenzene as a reaction medium yielded best productivity in conjunction to the total α-olefin (1-C6 + 1-C8) selectivity (∼88 wt %). N-aryl PNP ligands (3 and 4) incorporating m-silyloxy substituents in the phenyl ring exhibited relatively poorer tetramerization performance while yielding higher PE fraction as compared to their m-alkyloxy derivatives. A detailed molecular structure of the best-performing pre-catalyst 1-Cr was established by single-crystal X-ray diffraction analysis. The stability of 1/Cr-based catalyst system was investigated for a reaction time of up to 2 h under optimized condition.

2.
Chem Commun (Camb) ; 58(72): 10044-10047, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35984213

ABSTRACT

Novel PNP ligands bearing an N-triptycene backbone were developed and evaluated for selective ethylene oligomerization. Upon activation with MMAO-3A, the pre-catalyst mixture containing Cr(acac)3/ligand efficiently promotes ethylene tetramerization with remarkably high productivities (up to 1733 kg gCr-1 h-1) and C8 olefin selectivities (up to 74.1 wt%). More importantly, ligands with a PNP moiety connecting at the 1- or 1,4-position of the triptycene molecule could achieve exceptionally high alpha (1-C6 + 1-C8) selectivities, exceeding 90 wt%, as a result of high 1-C6 purity (>90 wt%) in the C6 fraction. Based on comparative catalytic studies employing various PNP ligands with or without an N-triptycene backbone, we illustrate the fact that a rational design of PNP ligands with an optimum degree of steric profile around the N-center could provide C6 cyclics controlled highly α-selective ethylene oligomerization.


Subject(s)
Anthracenes , Ethylenes , Ligands , Molecular Structure
3.
ACS Omega ; 7(19): 16333-16340, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35601288

ABSTRACT

Tetramerization of ethylene by chromium catalysts stabilized with functionalized N-aryl phosphineamine ligands C6H4(m-CF3)N(PPh2)2 (1), C6H4(p-CF3)N(PPh2)2 (2), C6H4(o-CF3)N=PPh2-PPh2 (3), and C6H3(3,5-bis(CF3))N(PPh2)2 (4) was evaluated. The parameter optimization includes temperature, co-catalyst, and solvent. Upon activation with MMAO-3A, the new catalyst system especially with m-functional PNP ligand (1) exhibited high 1-octene selectivity and productivity while giving minimum undesirable polyethylene and C10 + olefin by-products. Using PhCl as a solvent at 75 °C led to a remarkable α-olefin (1-C6 + 1-C8) selectivity (>90 wt %) at a reaction rate of 2000 kg·gCr -1·h-1. Under identical conditions, analogous PNP ligands bearing -CH3, -Et, and -Cl functional moieties at the meta position of the N-phenyl ring displayed significantly lower reactivity. The catalyst with p-functional ligand (2) exhibited lower activity and comparable selectivities, while the Cr/PPN (with ligand 3) system gave no noticeable reactivity. The molecular structure of the precatalyst (1-Cr), exhibiting a monomeric structural feature, was elucidated with the aid of single-crystal X-ray diffraction study.

SELECTION OF CITATIONS
SEARCH DETAIL
...