Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Iran Med ; 26(4): 186-197, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38301078

ABSTRACT

BACKGROUND: Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS: First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS: We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION: To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.


Subject(s)
Intellectual Disability , Humans , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Iran/epidemiology , Family , Mutation , Pedigree , Consanguinity , Genes, Recessive
2.
Eur J Pharmacol ; 932: 175233, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36038011

ABSTRACT

Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.


Subject(s)
Dendrimers , MicroRNAs , Neoplasms , Antagomirs , Cell Line, Tumor , Down-Regulation , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Silicon Dioxide/metabolism
3.
Clin Genet ; 99(1): 187-192, 2021 01.
Article in English | MEDLINE | ID: mdl-32895917

ABSTRACT

Mutations in adaptor protein complex-4 (AP-4) genes have first been identified in 2009, causing a phenotype termed as AP-4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotype-phenotype correlation of the AP-4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected disease-causing variants in AP-4 complex subunits, using next-generation sequencing. Furthermore, by comparing genotype-phenotype findings of those affected individuals with previously reported patients, we further refine the genotype-phenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the AP-4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders.


Subject(s)
Adaptor Protein Complex 4/genetics , Genetic Association Studies , Intellectual Disability/genetics , Quadriplegia/genetics , Adaptor Protein Complex 4/deficiency , Adolescent , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Cohort Studies , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Female , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/pathology , Iran/epidemiology , Male , Mutation/genetics , Pedigree , Phenotype , Quadriplegia/diagnostic imaging , Quadriplegia/pathology
4.
PLoS Genet ; 15(9): e1008385, 2019 09.
Article in English | MEDLINE | ID: mdl-31550250

ABSTRACT

Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.


Subject(s)
Ethnicity/genetics , Genetic Variation/genetics , Adult , Aged , Consanguinity , Female , Genetics, Population/methods , Genome-Wide Association Study/methods , Humans , Iran/ethnology , Male , Middle Aged
5.
Mol Psychiatry ; 24(7): 1027-1039, 2019 07.
Article in English | MEDLINE | ID: mdl-29302074

ABSTRACT

Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.


Subject(s)
Genes, Recessive/genetics , Intellectual Disability/genetics , Adult , Consanguinity , Exome/genetics , Family , Female , High-Throughput Nucleotide Sequencing/methods , Homozygote , Humans , Iran , Male , Middle Aged , Mutation/genetics , Pedigree , Protein Interaction Maps/genetics , Exome Sequencing/methods , Whole Genome Sequencing/methods
6.
Clin Genet ; 95(1): 151-159, 2019 01.
Article in English | MEDLINE | ID: mdl-30315573

ABSTRACT

In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in near- and middle-east countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but because of the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole-exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6-fold, and about 4.1 to 4.25-fold for children of first-cousin unions. These results do not rhyme with recent opinions that consanguinity-related health risks are generally small and have been "overstated" in the past.


Subject(s)
Genes, Recessive , Inbreeding , Intellectual Disability/genetics , Consanguinity , Exome/genetics , Family , Female , Homozygote , Humans , Intellectual Disability/epidemiology , Intellectual Disability/pathology , Iran/epidemiology , Male , Middle East/epidemiology , Mutation , Pedigree , Exome Sequencing
7.
Arch Iran Med ; 18(10): 688-97, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26443251

ABSTRACT

BACKGROUND: The genetic basis of longevity is an important field of study because the majority of supercentenarian cases experience healthy aging and may only show age-related diseases in their last few years of life. It is clear that genetic factors play an important role in survival beyond 90 years of age, but the exact relationship of genetic variants to this phenomenon remains unknown. OBJECTIVE: The aim of this project was to investigate different hypotheses that describe the relationship between genetic variants and human longevity in a living Iranian man by Whole Exome Sequencing. METHODS: Initially, we conducted high quality DNA extraction on a peripheral blood sample. Then, whole exome sequencing was performed on the DNA and different bioinformatic software packages and databases were used to analyze the data. Tertiary analysis was performed on four genetic hypotheses for longevity. RESULTS: Analysis showed that among 27 metabolic variants which are related to longevity, 18 variants encompassed the exceptional longevity allele. In comparison with the NHGRI GWAS catalog, the case had 58 trait-associated variants of which 11 were homozygous for the risk allele. We also discovered 25 novel variants within candidate genes for aging and longevity and we detected seven longevity-associated variants in the sample. CONCLUSION: This study was performed on just one sample and so the results cannot be interpreted as a generalized principle for other elderly societies, but this is the first step towards investigation of the genetic basis of longevity in Iran and provides an insight for further studies in the field of longevity.


Subject(s)
Aging/genetics , Alleles , Exome/genetics , Longevity/genetics , Aged, 80 and over , Computational Biology , Genotype , Humans , Iran , Male
8.
J Med Genet ; 52(12): 823-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26445815

ABSTRACT

BACKGROUND: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN: Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS: We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION: This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.


Subject(s)
Hearing Loss/genetics , Connexin 26 , Connexins , Consanguinity , Founder Effect , Gene Frequency , Genes, Recessive , Genetic Association Studies , Genetic Predisposition to Disease , Hearing Loss/pathology , Humans , Iran
SELECTION OF CITATIONS
SEARCH DETAIL
...