Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Arch Biochem Biophys ; 753: 109911, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280562

ABSTRACT

Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.


Subject(s)
Diabetes Mellitus, Type 2 , Vitamin D Deficiency , Humans , Glycated Hemoglobin , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/epidemiology , Cross-Sectional Studies , Vitamin D/therapeutic use , Vitamins , Dietary Supplements , Observational Studies as Topic
2.
Brain ; 147(5): 1710-1725, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38146639

ABSTRACT

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Subject(s)
Alzheimer Disease , Isoindoles , Mitochondria , Organoselenium Compounds , Peptidyl-Prolyl Isomerase F , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Peptidyl-Prolyl Isomerase F/metabolism , Animals , Mitochondria/drug effects , Mitochondria/metabolism , Mice , Humans , Cognition/drug effects , Azoles/pharmacology , Azoles/therapeutic use , Cyclophilins/metabolism , Cyclophilins/antagonists & inhibitors , Mice, Transgenic , Mice, Inbred C57BL , Male , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
3.
Res Sq ; 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37987006

ABSTRACT

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with progressive cognitive decline in aging individuals that poses a significant challenge to patients due to an incomplete understanding of its etiology and lack of effective interventions. While "the Amyloid Cascade Hypothesis," the abnormal accumulation of amyloid-ß in the brain, has been the most prevalent theory for AD, mounting evidence from clinical and epidemiological studies suggest that defects in cerebral vessels and hypoperfusion appear prior to other pathological manifestations and might contribute to AD, leading to "the Vascular Hypothesis." However, assessment of structural and functional integrity of the cerebral vasculature in vivo in the brain from AD rodent models has been challenging owing to the limited spatiotemporal resolution of conventional imaging technologies. Methods: We employed two in vivo imaging technologies, i.e., Dual-Wavelength Imaging (DWI) and Optical Coherence Tomography (OCT), to evaluate cerebrovascular reactivity (CVR; responsiveness of blood vessels to vasoconstriction as triggered by cocaine) in a relatively large field of view of the cortex in vivo, and 3D quantitative cerebrovascular blood flow (CBF) imaging in living transgenic AD mice at single vessel resolution. Results: Our results showed significantly impaired CVR and reduced CBF in basal state in transgenic AD mice compared to non-transgenic littermates in an early stage of AD progression. Changes in total hemoglobin (Δ[HbT]) in response to vasoconstriction were significantly attenuated in AD mice, especially in arteries and tissue, and the recovery time of Δ[HbT] after vasoconstriction was shorter for AD than WT in all types of vessels and cortical tissue, thereby indicating hypoperfusion and reduced vascular flexibility. Additionally, our 3D OCT images revealed that CBF velocities in arteries were slower and that the microvascular network was severely disrupted in the brain of AD mice. Conclusions: These results suggest significant vascular impairment in basal CBF and dynamic CVR in the neurovascular network in a rodent model of AD at an early stage of the disease. These cutting-edge in vivo optical imaging tools offer an innovative venue for detecting early neurovascular dysfunction in relation to AD pathology and pave the way for clinical translation of early diagnosis and elucidation of AD pathogenesis in the future.

4.
Front Microbiol ; 14: 1190105, 2023.
Article in English | MEDLINE | ID: mdl-37389344

ABSTRACT

The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.

6.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 68-82, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35809301

ABSTRACT

C-phycocyanin (C-PC), the integral blue-green algae (BGA) constituent has been substantially delineated for its biological attributes. Numerous reports have illustrated differential extraction and purification techniques for C-PC, however, there exists paucity in a broadly accepted process of its isolation. In the present study, we reported a highly selective C-PC purification and characterization method from nontoxic, filamentous and non-heterocystous cyanobacterium Plectonema sp. C-PC was extracted by freeze-thawing, desalted and purified using ion-exchange chromatography. The purity of C-PC along with its concentration was found to be 4.12 and 245 µg/ml respectively.  Comparative characterization of standard and purified C-PC was performed using diverse spectroscopic techniques namely Ultra Violet-visible, fluorescence spectroscopy and Fourier transform infrared (FT-IR). Sharp peaks at 620 nm and 350 nm with UV-visible and FT-IR spectroscopy respectively, confirmed amide I bands at around 1638 cm-1 (C=O stretching) whereas circular dichroism (CD) spectra exhibited α-helix content of secondary structure of standard 80.59% and 84.59% of column purified C-PC. SDS-PAGE exhibited two bands of α and ß subunits 17 and 19 kDa respectively. HPLC evaluation of purified C-PC also indicated a close resemblance of retention peak time (1.465 min, 1.234 min, 1.097 min and 0.905 min) with standard C-PC having retention peak timing of 1.448 min, 1.233 min and 0.925 min. As a cautious approach, the purified C-PC was further lyophilized to extend its shelf life as compared to its liquid isoform. To evaluate the bioactive potential of the purified C-PC in silico approach was attempted. The molecular docking technique was carried out of C-PC as a ligand-protein with free radicals and α-amylase, α-glucosidase, glycogen synthase kinase-3 and glycogen phosphorylase enzymes as receptors to predict the free radical scavenging (antioxidant) and to target antidiabetic property of C-PC. In both receptors free radicals and enzymes, ligand C-PC plays an important role in establishing interactions within the cavity of active sites. These results established the antioxidant potential of C-PC and also give a clue towards its antidiabetic potential warranting further research.


Subject(s)
Cyanobacteria , Plectonema , Antioxidants/chemistry , Antioxidants/pharmacology , Cyanobacteria/chemistry , Free Radicals , Hypoglycemic Agents , Ligands , Molecular Docking Simulation , Phycocyanin/chemistry , Spectroscopy, Fourier Transform Infrared
7.
Nat Commun ; 13(1): 3548, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35729174

ABSTRACT

Despite the fact that proteins carry out nearly all cellular functions and mark the differences of cells, the existing single-cell tools can only analyze dozens of proteins, a scale far from full characterization of cells and tissue yet. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology that affords the comprehensive functional proteome profiling of single cells. We demonstrate the technology by detecting 182 proteins that include surface markers, neuron function proteins, neurodegeneration markers, signaling pathway proteins, and transcription factors. Further studies on cells derived from the 5XFAD mice, an Alzheimer's Disease (AD) model, validate the utility of our technology and reveal the deep heterogeneity of brain cells. Through comparison with control mouse cells, we have identified differentially expressed proteins in AD pathology. Our technology could offer new insights into cell machinery and thus may advance many fields including drug discovery, molecular diagnostics, and clinical studies.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Animals , Biomarkers/metabolism , Brain/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Neurons/metabolism
8.
Oxid Med Cell Longev ; 2021: 6621568, 2021.
Article in English | MEDLINE | ID: mdl-34970417

ABSTRACT

OBJECTIVES: In diabetes mellitus, hyperglycemia-mediated nonenzymatic glycosylation of fibrinogen protein plays a crucial role in the pathogenesis of micro- and macrovascular complications especially atherosclerosis via the generation of advanced glycation end products (AGEs). Methylglyoxal (MG) induces glycation of fibrinogen, resulting in structural alterations that lead to autoimmune response via the generation of neoepitopes on protein molecules. The present study was designed to probe the prevalence of autoantibodies against MG-glycated fibrinogen (MG-Fib) in type 2 diabetes mellitus (T2DM), atherosclerosis (ATH), and diabetic atherosclerosis (T2DM-ATH) patients. Design and Methods. The binding affinity of autoantibodies in patients' sera (T2DM, n = 100; ATH, n = 100; and T2DM-ATH, n = 100) and isolated immunoglobulin G (IgG) against native fibrinogen (N-Fib) and MG-Fib to healthy subjects (HS, n = 50) was accessed by direct binding ELISA. The results of direct binding were further validated by competitive/inhibition ELISA. Moreover, AGE detection, ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), thiobarbituric acid reactive substances (TBARS), and carboxymethyllysine (CML) concentrations in patients' sera were also determined. Furthermore, free lysine and free arginine residues were also estimated. RESULTS: The high binding affinity was observed in 54% of T2DM, 33% of ATH, and 65% of T2DM-ATH patients' samples with respect to healthy subjects against MG-Fib antigen in comparison to N-Fib (p < 0.05 to p < 0.0001). HS sera showed nonsignificant binding (p > 0.05) with N-Fib and MG-Fib. Other biochemical parameters were also found to be significant (p < 0.05) in the patient groups with respect to the HS group. CONCLUSIONS: These findings in the future might pave a way to authenticate fibrinogen as a biomarker for the early detection of diabetes-associated micro- and macrovascular complications.


Subject(s)
Atherosclerosis/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Fibrinogen/metabolism , Pyruvaldehyde/metabolism , Adult , Female , Humans , Male , Middle Aged
9.
Plants (Basel) ; 10(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34834617

ABSTRACT

The objective of this research was to determine the effect of zinc oxide nanoparticles (ZnONPs) and/or salicylic acid (SA) under arsenic (As) stress on rice (Oryza sativa). ZnONPs are analyzed for various techniques viz., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). All of these tests established that ZnONPs are pure with no internal defects, and can be potentially used in plant applications. Hence, we further investigated for better understanding of the underlying mechanisms and the extent of ZnONPs and SA induced oxidative stress damages. More restricted plant growth, gas exchange indices, significant reduction in the SPAD index and maximum quantum yield (Fv/Fm) and brutal decline in protein content were noticed in As-applied plants. In contrast, foliar fertigation of ZnONPs and/or SA to As-stressed rice plants lessens the oxidative stress, as exposed by subordinate levels of reactive oxygen species (ROS) synthesis. Improved enzymatic activities of catalase (CAT), peroxidase (POX), and superoxide dismutase (SOD), proline and total soluble protein contents under ZnONPs and SA treatment plays an excellent role in the regulation of various transcriptional pathways participated in oxidative stress tolerance. Higher content of nitrogen (N; 13%), phosphorus (P; 10%), potassium (K; 13%), zinc (Zn; 68%), manganese (Mn; 14%), and iron (Fe; 19) in ZnONPs and SA treated plants under As-stress, thus hampered growth and photosynthetic efficiency of rice plants. Our findings suggest that toxicity of As was conquering by the application of ZnONPs and SA in rice plants.

10.
Oxid Med Cell Longev ; 2021: 7086951, 2021.
Article in English | MEDLINE | ID: mdl-34712386

ABSTRACT

The current study is aimed at studying the inhibitory effect of glycyrrhizic acid (GA) on D-ribose-mediated protein glycation via various physicochemical analyses and in silico approaches. Being a potent free radical scavenger and a triterpenoid saponin, GA plays a vital role in diminishing the oxidative stress and thus could be an effective inhibitor of the nonenzymatic glycation process. Our data showed that varying concentrations of GA inhibited the in vitro BSA-AGEs via inhibiting the formation of fructosamines, fluorescent AGEs, scavenging protein carbonyl and hydroxymethyl furfural (HMF) content, and protection against D-ribose-induced modification of BSA as evident by increased free Arg and Lys residues in GA-treated Gly-BSA samples. Moreover, GA also attenuated D-ribose-induced alterations in the secondary structure of BSA by protecting the α-helix and ß-sheet conformers and amide-I band delocalization. In addition, GA attenuated the modification in ß-cross amyloid structures of BSA and in silico molecular interaction study too showed strong binding of GA with higher number of Lys and Arg residues of BSA and binding energy (ΔG) of -8.8 Kcal/mol, when compared either to reference standard aminoguanidine (AG)-BSA complex (ΔG: -4.3 Kcal/mol) or D-ribose-BSA complex (ΔG: -5.2 Kcal/mol). Therefore, GA could be a new and favorable inhibitor of the nonenzymatic glycation process that ameliorates AGEs-related complications via attenuating the AGE formation and glycation-induced multiple protein modifications with a reduced risk of adverse effects on protein structure and functionality; hence, it could be investigated at further preclinical settings for the treatment and management of diabetes and age-associated complications.


Subject(s)
Antioxidants/pharmacology , Glycation End Products, Advanced/metabolism , Glycyrrhizic Acid/pharmacology , Hypoglycemic Agents/pharmacology , Molecular Docking Simulation , Protein Carbonylation/drug effects , Protein Processing, Post-Translational/drug effects , Ribose/metabolism , Serum Albumin, Bovine/metabolism , Amyloid/metabolism , Glycosylation
11.
Front Aging Neurosci ; 13: 720715, 2021.
Article in English | MEDLINE | ID: mdl-34566624

ABSTRACT

Vascular dementia (VaD) is the second most common form of dementia after Alzheimer's disease (AD); where Alzheimer's accounts for 60-70% of cases of dementia and VaD accounts for 20% of all dementia cases. VaD is defined as a reduced or lack of blood flow to the brain that causes dementia. VaD is also known occasionally as vascular contributions to cognitive impairment and dementia (VCID) or multi-infarct dementia (MID). VCID is the condition arising from stroke and other vascular brain injuries that cause significant changes to memory, thinking, and behavior, and VaD is the most severe stage while MID is produced by the synergistic effects caused by multiple mini strokes in the brain irrespective of specific location or volume. There are also subtle differences in the presentation of VaD in males and females, but they are often overlooked. Since 1672 when the first case of VaD was reported until now, sex and gender differences have had little to no research done when it comes to the umbrella term of dementia in general. This review summarizes the fundamentals of VaD followed by a focus on the differences between sex and gender when an individual is diagnosed. In addition, we provide critical evidence concerning sex and gender differences with a few of the main risk factors of VaD including pre-existing health conditions and family history, gene variants, aging, hormone fluctuations, and environmental risk factors. Additionally, the pharmaceutical treatments and possible mitigation of risk factors is explored.

12.
Free Radic Biol Med ; 164: 429-438, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33359687

ABSTRACT

Aging is a strong risk factor for brain dementia and cognitive decline. Age-related accumulation of metabolites such as advanced glycation end products (AGEs) could serve as danger signals to initiate and accelerate disease process and neurodegeneration. The underlying causes and consequences of cerebral AGEs accumulation remain largely unknown. Here, we comprehensively investigate age-related accumulation of AGEs and dicarbonyls, including methylglyoxal (MG), glyoxal (GO), and 3-deoxyglucosone (3-DG), and the effects of mitochondrial reactive oxygen species (ROS) on cerebral AGEs accumulation, mitochondrial function, and oxidative stress in the aging human and mouse brain. We demonstrate that AGEs, including arginine and lysine derived N(6)-carboxymethyl lysine (CML), Nε-(1-Carboxyethyl)-l-lysine (CEL), and methylglyoxal-derived hydroimidazolone-1 (MG-H1), were significantly elevated in the cerebral cortex and hippocampus with advanced age in mice. Accordingly, aging mouse and human brains revealed decrease in activities of mitochondrial respiratory chain complexes I & IV and ATP levels, and increased ROS. Notably, administration of mitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mTEMPO), a scavenger of mitochondrial ROS, not only suppressed ROS production but also reduced aged-induced accumulation of AGEs and dicarbonyls. mTEMPO treatment improved mitochondrial respiratory function and restored ATP levels. Our findings provide evidence linking age-related accumulation of toxic metabolites (AGEs) to mitochondrial oxidative stress. This highlights a novel mechanism by which AGEs-dependent signaling promotes carbonyl stress and sustained mitochondrial dysfunction. Eliminating formation and accumulation of AGEs may represent a new therapeutic avenue for combating cognitive decline and mitochondrial degeneration relevant to aging and neurodegenerative diseases including Alzheimer's disease.


Subject(s)
Glycation End Products, Advanced , Mitochondria , Animals , Arginine , Mice , Pyruvaldehyde , Reactive Oxygen Species
13.
J Alzheimers Dis ; 76(1): 165-178, 2020.
Article in English | MEDLINE | ID: mdl-32444539

ABSTRACT

BACKGROUND: Advanced glycation end products (AGEs) are an important risk factor for the development of cognitive decline in aging and late-onset neurodegenerative diseases including Alzheimer's disease. However, whether and how dietary AGEs exacerbate cognitive impairment and brain mitochondrial dysfunction in the aging process remains largely unknown. OBJECTIVE: We investigated the direct effects of dietary AGEs on AGE adducts accumulation, mitochondrial function, and cognitive performance in mice. METHODS: Mice were fed the AGE+ diet or AGE- diet. We examined levels of AGE adducts in serum and cerebral cortexes by immunodetection and immunohistochemistry, determined levels of reactive oxygen species by biochemical analysis, detected enzyme activity associated with mitochondrial respiratory chain complexes I & IV and ATP levels, and assessed learning and memory ability by Morris Water Maze and nesting behavior. RESULTS: Levels of AGE adducts (MG-H1 and CEL) were robustly increased in the serum and brain of AGE+ diet fed mice compared to the AGE- group. Furthermore, greatly elevated levels of reactive oxygen species, decreased activities of mitochondrial respiratory chain complexes I & IV, reduced ATP levels, and impaired learning and memory were evident in AGE+ diet fed mice compared to the AGE- group. CONCLUSION: These results indicate that dietary AGEs are important sources of AGE accumulation in vivo, resulting in mitochondrial dysfunction, impairment of energy metabolism, and subsequent cognitive impairment. Thus, reducing AGEs intake to lower accumulation of AGEs could hold therapeutic potential for the prevention and treatment of AGEs-induced mitochondrial dysfunction linked to cognitive decline.


Subject(s)
Cognition/physiology , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Diet/adverse effects , Glycation End Products, Advanced/toxicity , Mitochondria/metabolism , Animals , Cognition/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Female , Glycation End Products, Advanced/administration & dosage , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Reactive Oxygen Species/metabolism
14.
Cell Immunol ; 351: 104062, 2020 05.
Article in English | MEDLINE | ID: mdl-32087930

ABSTRACT

AIMS: Non-enzymatic reaction of biomolecules leads to the formation of advanced glycation end products (AGEs). AGEs plays significant role in the pathophysiology of type 2 diabetes mellitus. Methylglyoxal (MG) is a highly reactive carbonyl compound which causes formation of early (ketoamines), intermediate (dicarbonyls) and advanced glycation end products (AGEs). Glycation also results in the generation of free radicals causing structural perturbations which leads to the generation of neoantigenic epitopes on LDL molecules. The aim of the present study was to investigate whether the modification of LDL results in auto-antibodies generation in type 2 diabetes patients'. METHODS: The binding affinity of circulating autoantibodies in patients against native and MG modified LDL were assessed as compared with healthy and age-matched controls (n = 50) and T2DM patients with disease duration (DD) 5-15 yrs (n = 80) and DD > 15 yrs (n = 50) were examined by direct binding ELISA. KEYFINDINGS: The high affinity binding were observed in 50% of T2DM with DD 5-15 and 62% of T2DM with DD > 15 of patient's sera antibodies to MG-LDL antigen, in comparison to its native analog (P < 0.05). NHS sera showed negligible binding with both native and glycated LDL. Competitive inhibition ELISA results exhibit greater affinity sera IgG than the direct binding ELISA results. The increase in glycation intermediate and ends product were also observed in T2DM patient's sera and NHS sera. SIGNIFICANCE: There might be the generation of neoantigenic epitopes on LDL macromoleucle which results in generation of antibodies in T2DM. The prevalence of antibodies was dependent on disease duration.


Subject(s)
Autoimmunity/immunology , Diabetes Mellitus, Type 2/immunology , Lipoproteins, LDL/immunology , Pyruvaldehyde/immunology , Adult , Aged , Autoantibodies/immunology , Autoantigens/immunology , Epitopes, B-Lymphocyte/immunology , Female , Glycation End Products, Advanced/immunology , Humans , Male , Middle Aged
15.
Int J Biol Macromol ; 122: 195-200, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30312697

ABSTRACT

Advanced glycation end-products (AGEs) can aggregate amid incessant inflammation, as may be available in patients with rheumatoid arthritis. d-Ribose reacts more promptly than glucose monosaccharide to the proteins and forms heterogeneous group of products known as AGEs. Obesity includes persons with provocative joint inflammation with increased lipid profile. Immunogenic evidences recommend a cross-sectional relationship between glycated LDL-Apo B100 and inflammation. The point of this examination was to look at the connection between d-ribose glycated ApoB100 (ApoB100-AGE) with obesity and rheumatoid arthritis. The binding specificity of auto-antibodies against ApoB100-AGE antigen present in obesity and rheumatoid arthritis patient's serum were inspected by direct binding and was further established by competitive inhibition ELISA. In the present study, hydroxyl radical, superoxide radical, ketoamine moieties, hydroxyl-methyl furfural (HMF) and carbonyl substances were evaluated in the patients' serum via respective specific methods. The prevalence of auto-antibodies against ApoB100-AGE antigen was recorded to be 58% and 52.86% from obese and rheumatoid arthritis patient respectively in contrast to its native analogue (P < 0.001). Moreover, the autoantibodies present in obese and arthritis patients were found to be highly specific towards ApoB100-AGE as confirmed by inhibition ELISA.


Subject(s)
Apolipoprotein B-100/metabolism , Arthritis, Rheumatoid/metabolism , Correlation of Data , Glycation End Products, Advanced/metabolism , Lipoproteins, LDL/metabolism , Obesity/metabolism , Adult , Aged , Female , Glycosylation , Humans , Hydroxyl Radical/metabolism , Male , Middle Aged , Superoxides/metabolism
16.
Methods Mol Biol ; 1779: 415-433, 2018.
Article in English | MEDLINE | ID: mdl-29886547

ABSTRACT

Mitochondrial and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Accumulation of amyloid beta-peptide (Aß) in mitochondria, particularly in synaptic mitochondria, potentiates and amplifies synaptic injury and disruption of synaptic transmission, leading to synaptic dysfunction and ultimately to synaptic failure. Thus, determination of the presence and levels of Aß in synaptic mitochondria associated with amyloid pathology is important for studying mitochondrial amyloid pathology. Here, we present a detailed methodology for the isolation of synaptic mitochondria from brain tissues and the determination of Aß levels in the isolated mitochondria as well as ultrastructural localization of synaptic mitochondrial Aß. These methods have been used successfully for the identification and characterization of Aß accumulation in synaptic mitochondria from mouse brains derived from transgenic AD mouse model. Additionally, we comprehensively discuss the sample preparation, experimental details, our unique procedures, optimization of parameters, and troubleshooting.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/isolation & purification , Brain/cytology , Mitochondria/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Animals , Brain/metabolism , Brain/pathology , Centrifugation, Density Gradient , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Microscopy, Electron , Mitochondria/pathology , Mitochondria/ultrastructure , Synapses/metabolism , Synapses/pathology , Synapses/ultrastructure
17.
Semin Cancer Biol ; 49: 9-19, 2018 04.
Article in English | MEDLINE | ID: mdl-29113952

ABSTRACT

Oxidative, carbonyl, and glycative stress have gained substantial attention recently for their alleged influence on cancer progression. Oxidative stress can trigger variable transcription factors, such as nuclear factor erythroid-2-related factor (Nrf2), nuclear factor kappa B (NF-κB), protein-53 (p-53), activating protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), ß-catenin/Wnt and peroxisome proliferator-activated receptor-γ (PPAR-γ). Activated transcription factors can lead to approximately 500 different alterations in gene expression, and can alter expression patterns of inflammatory cytokines, growth factors, regulatory cell cycle molecules, and anti-inflammatory molecules. These alterations of gene expression can induce a normal cell to become a tumor cell. Glycative stress resulting from advanced glycation end products (AGEs) and reactive dicarbonyls can significantly affect cancer progression. AGEs are fashioned from the multifaceted chemical reaction of reducing sugars with a compound containing an amino group. AGEs bind to and trigger the receptor for AGEs (RAGE) through AGE-RAGE interaction, which is a major modulator of inflammation allied tumors. Dicarbonyls like, GO (glyoxal), MG (methylglyoxal) and 3-DG (3-deoxyglucosone) fashioned throughout lipid peroxidation, glycolysis, and protein degradation are viewed as key precursors of AGEs. These dicarbonyls lead to the carbonyl stress in living organisms, possibly resulting in carbonyl impairment of proteins, carbohydrates, DNA, and lipoproteins. The damage caused by carbonyls results in numerous lesions, some of which are involved in cancer pathogenesis. In this review, the effects of oxidative, carbonyl and glycative stress on cancer initiation and progression are thoroughly discussed, including probable signaling pathways and the effects on tumorigenesis.


Subject(s)
Glycation End Products, Advanced/metabolism , Neoplasms/metabolism , Oxidative Stress , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Animals , Glycosylation , Humans , Inflammation/metabolism , Male , Oxidation-Reduction , Transcription Factors/metabolism
18.
J Clin Lab Anal ; 31(2)2017 Mar.
Article in English | MEDLINE | ID: mdl-27561427

ABSTRACT

BACKGROUND: This study analyzes effect of glycation on ApoB-100 residues by D-ribose as D-ribosylated-glycated LDL might be responsible for the cause of diabetes mellitus because of its far higher antigenic ability. The binding characteristics of circulating auto-antibodies in type 1 and type 2 diabetes patients against native and modified LDL were assessed. METHODS: T1 Diabetes (n = 43), T2 diabetes patients (n = 100) were examined by direct binding ELISA as well as inhibition ELISA, were compared with healthy age-matched controls (n = 50). RESULTS: High degree of specific binding was observed by 74.42% of T1 diabetes and 45.0% of T2 diabetes patient's sera toward glycated LDL, in comparison to its native analog. Competitive inhibition ELISA reiterates the direct binding results. Furthermore, ketoamine content, Hydroxymethylfurfural (HMF) content and carbonyl content were also estimated in patient's sera healthy subjects. The increase in total serum protein carbonyl levels in the diabetes patients was largely due to an increase in oxidative stress. The increase in ketoamine as well as HMF content inpatients sera than healthy subjects is an agreement of induced glycation reaction in patients than healthy subjects. CONCLUSION: D-ribosylated-LDL has resulted in structural perturbation causing generation of neo-antigenic epitopes that are better antigens for antibodies in T1 and T2 diabetes patients.


Subject(s)
Apolipoprotein B-100/metabolism , Autoantibodies/blood , Autoantibodies/immunology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Lipoproteins, LDL/immunology , Ribose/metabolism , Adult , Aged , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Female , Furaldehyde/analogs & derivatives , Furaldehyde/blood , Glycation End Products, Advanced , Glycosylation , Humans , Male , Middle Aged , Protein Binding/immunology
19.
Life Sci ; 151: 139-146, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26874030

ABSTRACT

AIMS: Glycation of proteins leads to the formation of advanced glycation end products (AGEs, which have significant role in the pathophysiology of diabetes complications. d-ribose appears to be the most reactive among the naturally occurring sugars and contribute significantly to the generation of AGEs. Glycation also results in the generation of free radicals causing structural modification which leads to the generation of neoantigenic epitopes. The aim of the present study was to investigate whether LDL modification results in auto-antibodies formation against its glycated conformer in diabetes and atherosclerosis patients. METHODS: The binding characteristics of circulating auto-antibodies in patients against native and modified LDL were assessed. T2D (n=105), ATH (n=106) and T2D-ATH patients (n=72) were examined by direct binding ELISA as well as inhibition ELISA, compared with healthy age-matched controls (n=50). Furthermore, ketoamine moieties, HMF and carbonyl content were also estimated in these patient's and healthy subjects. KEY FINDINGS: High degree of specific binding was observed by 41.91% of T2D, 54.72% of ATH and 70.83% T2D-ATH patient's sera towards d-ribose glycated LDL, in comparison to its native analog (P<0.05). Normal human sera showed negligible binding with either antigen. Competitive inhibition ELISA reiterates the direct binding results. The higher concentration of HMF, ketoamine and carbonyl content was observed in patient's sera than healthy subjects. SIGNIFICANCE: LDL glycation results in structural perturbation causing generation of neoantigenic epitopes that are better antigens for antibodies in T2D, ATH and T2D-ATH patients where T2D-ATH subjects showed higher prevalence in auto-antibodies against ribosylated LDL.


Subject(s)
Adaptive Immunity/immunology , Atherosclerosis/immunology , Diabetes Mellitus, Type 2/immunology , Diabetic Angiopathies/immunology , Lipoproteins, LDL/immunology , Adult , Antigen-Antibody Reactions , Antioxidants/metabolism , Atherosclerosis/complications , Atherosclerosis/pathology , Autoantibodies/biosynthesis , Autoantibodies/genetics , Diabetes Mellitus, Type 2/complications , Diabetic Angiopathies/complications , Diabetic Angiopathies/pathology , Epitopes/immunology , Female , Glycation End Products, Advanced , Humans , Male , Middle Aged , Protein Carbonylation
20.
Int J Biol Macromol ; 72: 1222-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450543

ABSTRACT

Glycation of biologically important macromolecules leads to the establishment of advanced glycation end products (AGEs) having significant role in the pathophysiology of various diseases. d-Ribose, is a highly reactive pentose sugar resulting in the rapid formation of AGEs. Formation of d-ribose derived glycated DNA and LDL has been previously demonstrated; however no comparative, extensive studies have been performed to assess the immunogenicity of d-ribose glycated calf thymus DNA (CT-DNA) and LDL. In the present study, the results showed that animals immunized with d-ribose modified CT-DNA and LDL induced antibodies as detected by direct binding and competition ELISA. The modified CT-DNA and LDL were found to be highly immunogenic, eliciting high titer immunogen-specific antibodies, while the native forms of DNA was almost non-immunogenic. The induced antibodies from modified CT-DNA and LDL exhibited wide range of heterogeneity in recognizing various nucleic acid conformers, DNA bases and amino acids. Furthermore, Serum antibodies from diabetes and diabetes atherosclerosis patients were screened for their binding to native CT-DNA, LDL and glycated CT-DNA, LDL. Glycated CT-DNA showed almost equivalent binding to both diabetes and diabetic atherosclerosis group while high recognition was observed when glycated LDL was used as an antigen.


Subject(s)
DNA/immunology , Lipoproteins, LDL/immunology , Ribose/metabolism , Animals , Atherosclerosis/blood , Atherosclerosis/immunology , Autoantibodies/blood , Cattle , Cross Reactions/immunology , Diabetes Mellitus/blood , Diabetes Mellitus/immunology , Enzyme-Linked Immunosorbent Assay , Glycation End Products, Advanced , Glycosylation , Immune Sera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...