Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836763

ABSTRACT

Mung bean contains up to 32.6% protein and is one of the great sources of plant-based protein. Because many allergens also function as defense-related proteins, it is important to determine their abundance levels in the high-yielding, disease-resistant cultivars. In this study, for the first time, we compared the seed proteome of high-yielding mung bean cultivars developed by a conventional breeding approach. Using a label-free quantitative proteomic platform, we successfully identified and quantified a total of 1373 proteins. Comparative analysis between the high-yielding disease-resistant cultivar (MC5) and the other three cultivars showed that a total of 69 common proteins were significantly altered in their abundances across all cultivars. Bioinformatic analysis of these altered proteins demonstrated that PDF1 (a defensin-like protein) exhibited high sequence similarity and epitope matching with the established peanut allergens, indicating a potential mung bean allergen that showed a cultivar-specific response. Conversely, known mung bean allergen proteins such as PR-2/PR-10 (Vig r 1), Vig r 2, Vig r 4, LTP1, ß-conglycinin, and glycinin G4 showed no alternation in the MC5 compared to other cultivars. Taken together, our findings suggest that the known allergen profiles may not be impacted by the conventional plant breeding method to develop improved mung bean cultivars.

2.
PLoS One ; 19(5): e0303305, 2024.
Article in English | MEDLINE | ID: mdl-38743648

ABSTRACT

The study aimed to assess the level of potentially toxic elements (As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni) and associated health implications through commonly consumed rice cultivars of Bangladesh available in Capital city, Dhaka. The range of As, Cd, Pb, Zn, Cu, Cr, Mn, and Ni in rice grains were 0.04-0.35, 0.01-0.15, 0.01-1.18, 10.74-34.35, 1.98-13.42, 0.18-1.43, 2.51-22.08, and 0.21-5.96 mg/kg fresh weight (FW), respectively. The principal component analysis (PCA) identified substantial anthropogenic activities to be responsible for these elements in rice grains. The estimated daily intake (EDI) of the elements was below the maximum tolerable daily intake (MTDI) level. The hazard index (HI) was above the threshold level, stating non-carcinogenic health hazards from consuming these rice cultivars. The mean target cancer risk (TCR) of As and Pb exceeded the USEPA acceptable level (10-6), revealing carcinogenic health risks from the rice grains.


Subject(s)
Oryza , Bangladesh/epidemiology , Oryza/chemistry , Humans , Food Contamination/analysis , Carcinogens/analysis , Carcinogens/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Principal Component Analysis
3.
Foods ; 12(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959116

ABSTRACT

Rice (Oryza sativa L.) is the principal staple food, a fundamental component of food security, a significant source of energy and major nutrients, and a key player in the overall nutritional status in Bangladesh. Parboiling is a common rice-processing treatment in Bangladesh. Recently, polishing has also become a common practice among millers seeking to attract consumers. Polishing may influence the nutrient composition of rice. The present study aimed to investigate the impact of parboiling and polishing on the nutritional content of the five High Yield Varieties (HYVs) of rice (BR11, BRRI dhan28, BRRI dhan29, BRRI dhan49, and BRRI dhan84) and their percent contributions to the Recommended Dietary Allowances (RDA) of vitamins and minerals. All of the rice samples were analyzed for proximate parameters, vitamins (B1, B2, B3, B6, and folate), and minerals (Ca, Mg, Fe, Zn, Na, K, P). Moisture, ash, fat, and total dietary fiber (TDF) were determined gravimetrically, according to the AOAC Official Methods; protein was measured by the Kjeldahl method; B-group vitamins were measured using Ultra Pressure Liquid Chromatography; and mineral content was determined by ICP-OES. The energy, protein, fat, and total dietary fiber (TDF) content of the samples ranged between 342-357 kcal/100 g, 6.79-10.74 g/100 g, 0.31-1.69 g/100 g, and 2.59-3.92 g/100 g respectively. Thiamin, riboflavin, niacin, pyridoxin, and folate content ranged from 0.11-0.25 mg/100 g, 0.01-0.05 mg/100 g, 2.82-6.42 mg/100 g, 0.12-0.30 g/100 g, and 5.40-23.95 g/100 g respectively. In a comparison of parboiling and polishing, macronutrients and vitamin retention were higher in parboiled unpolished rice than in polished unparboiled rice. The minerals (mg/100 g) Ca, Mg, Fe, Zn, Na, K, and P were in the ranges 32.82-44.72, 30.69-58.34, 0.51-0.70,1.83-2.79, 5.00-5.36, 106.49-112.73, and 162.23-298.03. Minerals of BRRI dhan84 were unaffected by polishing and parboiling. BRRI dhan84 contributed a higher percentage of RDA of all B vitamins and minerals. Therefore, to reduce nutrient loss in rice, industries and consumers should be encouraged to avoid polishing or limit polishing to 10% DOM and to consume unpolished rice, either parboiled or unparboiled.

4.
Food Chem ; 297: 124936, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31253339

ABSTRACT

Here, we present the proteome profiling of low-molecular weight (<50 kDa) proteins of seven different lentil cultivars developed by Bangladesh Agricultural Research Institute. A total of 2873 peptides corresponding to 180 unique proteins were identified wherein >24% of them were described lentil allergens. Comparative relative quantitation showed differences in protein abundance of major allergen proteins such as Len c 1.0101, Len c 1.0102, and lipid transfer proteins (LTPs), indicating qualitative and quantitative variations in allergen proteins in lentil cultivars. In this report, for the first-time, the amino acid sequence of LTPs in lentil has been confirmed by high resolution mass spectrometry. In addition, ideal peptides of Len c 1.0101, Len c 1.0102, and LTPs allergens were further determined with multiple reaction monitoring (MRM) analysis. Therefore, this data could provide a great resource for further development of targeted, proteomics-based assays for quantification of lentil allergens.


Subject(s)
Allergens/analysis , Lens Plant/metabolism , Plant Proteins/analysis , Proteomics/methods , Allergens/chemistry , Allergens/immunology , Amino Acid Sequence , Bangladesh , Chromatography, High Pressure Liquid , Molecular Weight , Plant Proteins/chemistry , Plant Proteins/immunology , Sequence Alignment , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...