Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5735, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977702

ABSTRACT

Topological growth control allows to produce a narrow distribution of outgrown colloidal rods with defined and adjustable length. We use an external magnetic field to assemble paramagnetic colloidal spheres into colloidal rods of a chosen length. The rods reside above a metamorphic hexagonal magnetic pattern. The periodic repetition of specific loops of the orientation of an applied external field renders paramagnetic colloidal particles and their assemblies into active bipeds that walk on the pattern. The metamorphic patterns allow the robust and controlled polymerization of single colloids to bipeds of a desired length. The colloids are exposed to this fixed external control loop that causes multiple simultaneous responses: Small bipeds and single colloidal particles interpret the external magnetic loop as an order to walk toward the active zone, where they assemble and polymerize. Outgrown bipeds interpret the same loop as an order to walk away from the active zone. The topological transition occurs solely for the growing biped and nothing is changed in the environment nor in the magnetic control loop. As in many biological systems the decision of a biped that reached its outgrown length to walk away from the reaction site is made internally, not externally.

2.
Nat Commun ; 14(1): 7517, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37980403

ABSTRACT

Topological protection ensures stability of information and particle transport against perturbations. We explore experimentally and computationally the topologically protected transport of magnetic colloids above spatially inhomogeneous magnetic patterns, revealing that transport complexity can be encoded in both the driving loop and the pattern. Complex patterns support intricate transport modes when the microparticles are subjected to simple time-periodic loops of a uniform magnetic field. We design a pattern featuring a topological defect that functions as an attractor or a repeller of microparticles, as well as a pattern that directs microparticles along a prescribed complex trajectory. Using simple patterns and complex loops, we simultaneously and independently control the motion of several identical microparticles differing only in their positions above the pattern. Combining complex patterns and complex loops we transport microparticles from unknown locations to predefined positions and then force them to follow arbitrarily complex trajectories concurrently. Our findings pave the way for new avenues in transport control and dynamic self-assembly in colloidal science.

3.
Nanomaterials (Basel) ; 12(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35564222

ABSTRACT

Nitrogen-vacancy (NV) color centers in diamond are excellent quantum sensors possessing high sensitivity and nano-scale spatial resolution. Their integration in photonic structures is often desired, since it leads to an increased photon emission and also allows the realization of solid-state quantum technology architectures. Here, we report the fabrication of diamond nano-pillars with diameters up to 1000 nm by electron beam lithography and inductively coupled plasma reactive ion etching in nitrogen-rich diamonds (type Ib) with [100] and [111] crystal orientations. The NV centers were created by keV-He ion bombardment and subsequent annealing, and we estimate an average number of NVs per pillar to be 4300 ± 300 and 520 ± 120 for the [100] and [111] samples, respectively. Lifetime measurements of the NVs' excited state showed two time constants with average values of τ1 ≈ 2 ns and τ2 ≈ 8 ns, which are shorter as compared to a single color center in a bulk crystal (τ ≈ 10 ns). This is probably due to a coupling between the NVs as well as due to interaction with bombardment-induced defects and substitutional nitrogen (P1 centers). Optically detected magnetic resonance measurements revealed a contrast of about 5% and average coherence and relaxation times of T2 [100] = 420 ± 40 ns, T2 [111] = 560 ± 50 ns, and T1 [100] = 162 ± 11 µs, T1 [111] = 174 ± 24 µs. These pillars could find an application for scanning probe magnetic field imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...